2014年考研数学二真题与-解析.doc
《2014年考研数学二真题与-解析.doc》由会员分享,可在线阅读,更多相关《2014年考研数学二真题与-解析.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、|2014 年考研数学二真题与解析一、选择题 18 小题每小题 4 分,共 32 分当 时,若 , 均是比 高阶的无穷小,则 的可能取值范围是( 0x)(lnx21)cos(x)(A) (B) (C) ( D)),(2),(1),(12),(210【详解】 ,是 阶无穷小, 是 阶无穷小,由题意可知x1)(ln 1x)cos(12所以 的可能取值范围是 ,应该选(B) ),(212下列曲线有渐近线的是(A) (B) (C ) (D)xysinxysin2 xy1sinxy12sin【详解】对于 ,可知 且 ,所以有斜渐近线1i1xlim0xxilm)(li y应该选(C)3设函数 具有二阶导数
2、, ,则在 上( ))(xf ffg)()(10,0(A)当 时, (B )当 时,0)xf x)(xgf(C)当 时, (D)当 时,)(f()(f【分析】此题考查的曲线的凹凸性的定义及判断方法【详解 1】如果对曲线在区间 上凹凸的定义比较熟悉的话,可以直接做出判断 显然,ba就是联接 两点的直线方程故当 时,曲线是xffxg)()(10 )(,(,10ff 0)(xf凹的,也就是 ,应该选(D )g【详解 2】如果对曲线在区间 上凹凸的定义不熟悉的话,可令,ba|,则 ,且 ,故当xffxgxfF)()()() 10 01)(F)(“)(xf时,曲线是凹的,从而 ,即 ,也就是0 0F0g
3、xf,应该选(D))(f4曲线 上对应于 的点处的曲率半径是( )1472tyx,1t() () ( ) ()500105【详解】 曲线在点 处的曲率公式 ,曲率半径 )(,xf 32)(“yKKR1本题中 ,所以 , ,42tdytx, ttdxy12432tdx对应于 的点处 ,所以 ,曲率半径 1t 13“, 1032)(“yK10KR应该选(C)5设函数 ,若 ,则 ( )xfarctn)()()(xf20xlim() () () () 132131【详解】注意(1) , (2) 1xf)( )(arctn, 30xox时由于 所以可知 , ,)()(xfff)()(21 22)(ar
4、ctn31302020 xoxarx )(lim)(ctnlilim6设 在平面有界闭区域 D 上连续,在 D 的内部具有二阶连续偏导数,且满足 及),yu 02yxu,则( ) 02x(A) 的最大值点和最小值点必定都在区域 D 的边界上; ),(yu|(B) 的最大值点和最小值点必定都在区域 D 的内部;),(yxu(C) 的最大值点在区域 D 的内部,最小值点在区域 D 的边界上;(D) 的最小值点在区域 D 的内部,最大值点在区域 D 的边界上),(y【详解】 在平面有界闭区域 D 上连续,所以 在 D 内必然有最大值和最小值并且如果xu ),(yxu在内部存在驻点 ,也就是 ,在这个
5、点处 ,),(0y0yxu xyuByuCA2222,由条件,显然 ,显然 不是极值点,当然也不是最值点,所以 的最大值点和2BAC),( ),(x最小值点必定都在区域 D 的边界上所以应该选(A) 7行列式 等于dcba0(A) (B) (C) (D)2)(2)(bcad22cbda22cbda【详解】 2000 )(bcadcbdacbdcadcba 应该选(B) 8设 是三维向量,则对任意的常数 ,向量 , 线性无关是向量321, lk,31k32l线性无关的,(A)必要而非充分条件 (B)充分而非必要条件(C)充分必要条件 (D) 非充分非必要条件【详解】若向量 线性无关,则321,(
6、 , ) ,对任意的常数 ,矩阵 的秩都等31k32l Klk),(),( 3213210 lk,K于 2,所以向量 , 一定线性无关3132l|而当 时,对任意的常数 ,向量 , 线性无关,但010321, lk,31k32l线性相关;故选择(A) 321,二、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上)9 125dx【详解】 11 122 8324214 )(|arctn)(xxd10设 为周期为 4 的可导奇函数,且 ,则 )(xf 0,),(f 7f【详解】当 时, ,由 可知 ,即20,Cxdf122)()( )(0C; 为周期为 4 奇函数,故
7、 f2)( 17)(ff11设 是由方程 确定的函数,则 ),(yxz22zyxeyz 21,|dz【详解】设 , ,当4722zzFyz),( 112yzzyzyx eFeF,时, , , ,所以 21yx01zxF2zy 21,|ddx12曲线 的极坐标方程为 ,则 在点 处的切线方程为 LrL,),(r【详解】先把曲线方程化为参数方程 ,于是在 处, ,sini)(coryx220yx,,则 在点 处的切线方程为 ,即22|sincoi|dxyL2, )(y.13一根长为 1 的细棒位于 轴的区间 上,若其线密度 ,则该细棒的质心坐标x10, 12x)(x|【详解】质心坐标 201351
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 考研 数学 二真题 解析
限制150内