半导体物理与器件第四版课后习题答案.pdf
《半导体物理与器件第四版课后习题答案.pdf》由会员分享,可在线阅读,更多相关《半导体物理与器件第四版课后习题答案.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Chapter 3 If oa were to increase, the bandgap energy would decrease and the material would begin to behave less like a semiconductor and more like a metal. If oa were to decrease, the bandgap energy would increase and the material would begin to behave more like an insulator._ Schrodingers wave equa
2、tion is:txxVxtxm,2222ttxj, Assume the solution is of the form:tEkxjxutxexp, Region I: 0 xV. Substituting the assumed solution into the wave equation, we obtain:tEkxjxjkuxmexp22tEkxjxxuexptEkxjxujEjexp which becomestEkxjxujkmexp222tEkxjxxujkexp2tEkxjxxuexp22tEkxjxEuexp This equation may be written as
3、0222222xumExxuxxujkxuk Setting xuxu1 for region I, the equation becomes:021221212xukdxxdujkdxxud where222mEIn Region II, OVxV. Assume the same form of the solution:tEkxjxutxexp, Substituting into Schrodingers wave equation, we find:tEkxjxujkmexp222tEkxjxxujkexp2tEkxjxxuexp22tEkxjxuVOexptEkxjxEuexp T
4、his equation can be written as:2222xxuxxujkxuk02222xumExumVO Setting xuxu2 for region II, this equation becomesdxxdujkdxxud22222022222xumVkO where again222mEWe have021221212xukdxxdujkdxxud Assume the solution is of the form:xkjAxuexp1xkjBexp The first derivative isxkjAkjdxxduexp1xkjBkjexp and the se
5、cond derivative becomesxkjAkjdxxudexp2212xkjBkjexp2 Substituting these equations into the differential equation, we findxkjAkexp2xkjBkexp2xkjAkjjkexp2xkjBkjexpxkjAkexp220expxkjB Combining terms, we obtain222222kkkkkxkjAexp222222kkkkk0expxkjB We find that00For the differential equation in xu2and the
6、proposed solution, the procedure is exactly the same as above._ We have the solutionsxkjAxuexp1xkjBexp for ax0 andxkjCxuexp2xkjD exp for 0 xb. The first boundary condition is0021uu which yields0DCBA The second boundary condition is0201xxdxdudxdu which yieldsCkBkAk0Dk The third boundary condition isb
7、uau21 which yieldsakjBakjAexpexpbkjC expbkjD exp and can be written asakjBakjAexpexpbkjC exp0expbkjD The fourth boundary condition isbxaxdxdudxdu21 which yieldsakjAkjexpakjBkjexpbkjCkjexpbkjDkjexp and can be written asakjAkexpakjBkexpbkjCkexp0expbkjDk_ (b) (i) First point: a Second point: By trial a
8、nd error,729.1a (ii) First point: 2a Second point: By trial and error,617.2a_ (b) (i) First point: a Second point: By trial and error,515.1a (ii) First point: 2a Second point: By trial and error,375.2a_kaaaaPcoscossin Let yka, xa ThenyxxxPcoscossin Consider dyd of this function.yxxxPdydsincossin1 We
9、 finddydxxxdydxxxPcossin112ydydxxsinsin ThenyxxxxxPdydxsinsincossin12 For nkay, ., 2, 1, 0n0sin y So that, in general,dkdkadaddydx0 And22mE SodkdEmmEdkd22/122221 This implies thatdkdEdkd0 for ank_(a)a1aEmo2122103123422221102. 41011.9210054. 12amEo19104114. 3J From Problem 729.12a729. 1222aEmo2103123
10、422102.41011.9210054.1729.1E18100198.1J12EEE1918104114.3100198.119107868.6Jor 24.4106.1107868.61919EeV(b)23a2223aEmo2103123423102. 41011.9210054.12E18103646.1J From Problem ,617.24a617.2224aEmo2103123424102 .41011. 9210054. 1617.2E18103364.2J34EEE1818103646.1103364.21910718.9J or 07.6106. 110718.919
11、19EeV_(a)At ka, a1aEmo2122103123421102.41011.9210054.1E19104114.3J At 0ka, By trial and error,859.0ao210312342102. 41011.9210054.1859. 0oE19105172.2JoEEE11919105172.2104114.32010942.8J or 559.0106 .110942.81920EeV(b)At 2ka, 23a2223aEmo2103123423102.41011.9210054.12E18103646. 1J At ka. From Problem ,
12、729.12a729.1222aEmo2103123422102 .41011. 9210054.1729. 1E18100198. 1J23EEE1818100198.1103646.119104474. 3J or 15. 2106.1104474. 31919EeV_(a)a1aEmo2122103123421102.41011.9210054.1E19104114. 3J From Problem , 515.12a515.1222aEmo2103123422102.41011.9210054.1515.1E1910830.7J12EEE1919104114.310830. 71910
13、4186.4J or 76.2106. 1104186.41919EeV(b)23a2223aEmo2103123423102 .41011.9210054.12E18103646.1J From Problem , 375.24a375.2224aEmo2103123424102. 41011.9210054.1375. 2E18109242.1J34EEE1818103646.1109242.11910597.5J or 50. 3106.110597.51919EeV_(a)At ka, a1aEmo2122103123421102.41011.9210054.1E19104114. 3
14、J At 0ka, By trial and error,727.0ao727.022aEmoo210312342102.41011. 9210054. 1727.0oE19108030. 1JoEEE11919108030. 1104114. 319106084.1J or 005.1106.1106084.11919EeV(b) At 2ka, 23a2223aEmo2103123423102. 41011.9210054.12E18103646.1J At ka, From Problem ,515. 12a515.1222aEmo2103423422102. 41011.9210054
15、.1515.1E1910830. 7J23EEE191810830.7103646.11910816.5J or 635.3106.110816.51919EeV_ For 100TK, 1006361001073.4170.124gE164.1gEeV200TK, 147.1gEeV300TK, 125.1gEeV400TK, 097.1gEeV500TK, 066.1gEeV600TK, 032.1gEeV_ The effective mass is given by1222*1dkEdm We haveBcurvedkEdAcurvedkEd2222 so that BcurvemAc
16、urvem*_ The effective mass for a hole is given by1222*1dkEdmp We have thatBcurvedkEdAcurvedkEd2222 so that BcurvemAcurvempp*_ Points A,B: 0dkdEvelocity in -x direction Points C,D: 0dkdEvelocity in +x direction Points A,D: 022dkEdnegative effective mass Points B,C: 022dkEdpositive effective mass_ For
17、 A: 2kCEi At 101008.0km1, 05.0EeV Or 2119108106.105. 0EJ So 2101211008. 0108C3811025.1C Now 38234121025.1210054.12Cm311044. 4kg or omm31311011.9104437.4omm488.0 For B: 2kCEi At 101008.0km1, 5. 0EeV Or 2019108106.15.0EJ So 2101201008.0108C3711025.1C Now 37234121025.1210054. 12Cm321044.4kg or omm31321
18、011.9104437. 4omm0488.0_ For A: 22kCEE2102191008.0106 .1025.0C3921025.6C39234221025.6210054. 12Cm31108873.8kg or omm31311011.9108873. 8omm976.0 For B: 22kCEE2102191008.0106. 13. 0C382105 .7C3823422105.7210054. 12Cm3210406.7kg or omm31321011. 910406. 7omm0813.0_(a)(i) hE or 341910625.6106.142. 1hE141
19、0429.3Hz (ii) 141010429.3103cEhc51075. 8cm875nm(b)(i) 341910625.6106 .112.1hE1410705.2Hz (ii) 141010705.2103c410109. 1cm1109nm_(c)Curve A: Effective mass is a constantCurve B: Effective mass is positive around 0k, and is negative around 2k._OOkkEEEcos1 ThenOkkEdkdEsin1OkkEsin1 andOkkEdkEdcos2122 The
20、n221222*11EdkEdmokk or212*Em_(a)3/123/24ltdnmmm3/123/264. 1082.04oommodnmm56.0(b)ooltcnmmmmm64.11082.02123oomm6098.039.24ocnmm12.0_(a)3/22/32/3lhhhdpmmm3/22/32/3082.045. 0oommom3/202348.030187. 0odpmm473.0(b)2/12/12/32/3lhhhlhhhcpmmmmmom2/12/12/32/3082.045.0082.045.0ocpmm34.0_ For the 3-dimensional
21、infinite potential well, 0 xV when ax0, ay0, and az0. In this region, the wave equation is:222222,zzyxyzyxxzyx0,22zyxmE Use separation of variables technique, so letzZyYxXzyx, Substituting into the wave equation, we have222222zZXYyYXZxXYZ022XYZmE Dividing by XYZ , we obtain021112222222mEzZZyYYxXX Le
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 半导体 物理 器件 第四 课后 习题 答案
限制150内