高考数学导数题型归纳(共12页).doc
《高考数学导数题型归纳(共12页).doc》由会员分享,可在线阅读,更多相关《高考数学导数题型归纳(共12页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上导数题型归纳请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等
2、式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-用分离变量时要特别注意是否需分类讨论(0,=0,0)第二种:变更主元(即关于某字母的一次函数)-(已知谁的范围就把谁作为主元);例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.解:由函数 得 (1) 在区间上为“凸函数”,则 在区间0,3上恒成立 解法一:从二次函数的区间最值入手:等价于 解法二:分离变量法: 当时, 恒成
3、立, 当时, 恒成立等价于的最大值()恒成立,而()是增函数,则(2)当时在区间上都为“凸函数” 则等价于当时 恒成立 解法三:变更主元法 再等价于在恒成立(视为关于m的一次函数最值问题)-22 例2:设函数 ()求函数f(x)的单调区间和极值; ()若对任意的不等式恒成立,求a的取值范围. (二次函数区间最值的例子)解:() 3aaa3a令得的单调递增区间为(a,3a)令得的单调递减区间为(,a)和(3a,+)当x=a时,极小值= 当x=3a时,极大值=b. ()由|a,得:对任意的恒成立则等价于这个二次函数 的对称轴 (放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最
4、值问题。上是增函数. (9分)于是,对任意,不等式恒成立,等价于 又点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:恒成立恒成立;从而转化为第一、二种题型例3;已知函数图象上一点处的切线斜率为,()求的值;()当时,求的值域;()当时,不等式恒成立,求实数t的取值范围。解:(), 解得 ()由()知,在上单调递增,在上单调递减,在上单调递增又 的值域是()令思路1:要使恒成立,只需,即分离变量思路2:二次函数区间最值二、题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为在给定区间上恒成立, 回归基础题型解法2:利用子区间(即子集思
5、想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集; 做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集例4:已知,函数()如果函数是偶函数,求的极大值和极小值;()如果函数是上的单调函数,求的取值范围解:. () 是偶函数, . 此时, 令,解得:. 列表如下:(,2)2(2,2)2(2,+)+00+递增极大值递减极小值递增 可知:的极大值为, 的极小值为. ()函数是上的单调函数,在给定区间R上恒成立判别式法则 解得:. 综上,的取值范围是. 例5、已知函数 (I)求的单调区间; (II)若在0,1上
6、单调递增,求a的取值范围。子集思想(I) 1、 当且仅当时取“=”号,单调递增。 2、 a-1-1单调增区间: 单调减区间:(II)当 则是上述增区间的子集:1、时,单调递增 符合题意2、, 综上,a的取值范围是0,1。 三、题型二:根的个数问题题1函数f(x)与g(x)(或与x轴)的交点=即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例6、已知函数,且在区间上为增函数(1) 求实
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 导数 题型 归纳 12
限制150内