2022年专题8立体几何中的向量方法—求空间角与距离高考数学一轮复习资料 .pdf





《2022年专题8立体几何中的向量方法—求空间角与距离高考数学一轮复习资料 .pdf》由会员分享,可在线阅读,更多相关《2022年专题8立体几何中的向量方法—求空间角与距离高考数学一轮复习资料 .pdf(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、课前小测摸底细题例:1.【人教 A版选修 2-1P97 习题 14 改编】若向量a(1,2),b(2,1,2)且 a 与 b 的夹角的余弦值为89,则 _2.【2014 高考北京理第17 题】如图,正方体MADE的边长为2,B,C分别为AM,MD的中点,在五棱锥ABCDEP中,F为棱PE的中点,平面ABF与棱FD,PC分别交于G,H.(1)求证:FGAB/;(2)若PA底面ABCDE,且PAAE,求直线BC与平面ABF所成角的大小,并求线段PH的长.(2)因为PA底面ABCDE,所以ABPA,AEPA,3.【广东省东 莞市 20XX届高三模拟考试一】如图所示的多面体中,ABCD是菱形,BD
2、EF是矩形,ED平面ABCD,3BAD,2AD(1)求证:平面FCB平面AED;(2)若二面角CEFA为直二面角,求直线BC与平面AEF所成的角的正弦值【答案】(1)平面FBC平面.EDA;(2)6sin4CGM.【解析】(1)矩形BDEF中,,FBEDFB平面AED,ED平面AED,FB平面AED,文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL
3、3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 H
4、L3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10
5、HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10
6、 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z1
7、0 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z
8、10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4
9、Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7文档编码:CC8K9R5X4Z10 HL3E2G5R10W9 ZY10U6J5Q4P7同理BC平面AED,又BBCFB平面FBC平面.EDA建立如图的直角坐标系,4.正四棱锥S ABCD 中,O 为顶点 S在底面上的射影,P 为侧棱 SD 的中点,且SOOD,则直线BC 与平面 PAC 所成的角是 _【答案】30o【解析】文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10
10、R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY1
11、0R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY
12、10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 H
13、Y10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10
14、HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10
15、 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A1
16、0 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E55.【改编自20XX年广东理】如图 1,在等腰直角三角形ABC中,90A,6BC,D E分别是,AC AB上的点,2CDBE,O为BC的中点.将ADE沿DE折起,得到如图2 所示的四棱锥ABCDE,其中3
17、A O.A O平面BCDE.求二面角ACDB的平面角的余弦值.文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7
18、N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J
19、7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10
20、J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY1
21、0J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY
22、10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:C
23、Y10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5二、课中考
24、点全掌握考点 1 异面直线所成的角【题组全面展示】【1-1】【20XX 年陕西高考】如图,在空间直角坐标系中有直三棱柱ABCA1B1C1,CACC12CB,则直线 BC1与直线 AB1夹角的余弦值为()A.55B.53C.2 55D.35文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10
25、J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY10J7N8U7A10 HY10R9B4N3Z3 ZC3S2I3L7E5文档编码:CY1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年专题8立体几何中的向量方法求空间角与距离高考数学一轮复习资料 2022 专题 立体几何 中的 向量 方法 空间 距离 高考 数学 一轮 复习资料

限制150内