2022年中考总结复习冲刺练:初中数学“最值问题”集锦 .pdf
《2022年中考总结复习冲刺练:初中数学“最值问题”集锦 .pdf》由会员分享,可在线阅读,更多相关《2022年中考总结复习冲刺练:初中数学“最值问题”集锦 .pdf(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考总结复习冲刺练:“最值问题”集锦平面几何中的最值问题 01 几何的定值与最值 07 最短路线问题 14 对称问题 18 巧作“对称点”妙解最值题 22 数学最值题的常用解法26 求最值问题29 有理数的一题多解34 4 道经典题37 平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率下面介绍几个简例在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。最值问题的解决方法通常有两种
2、:(1)应用几何性质:三角形的三边关系:两边之和大于第三边,两边之差小于第三边;两点间线段最短;连结直线外一点和直线上各点的所有线段中,垂线段最短;定圆中的所有弦中,直径最长。运用代数证法:运用配方法求二次三项式的最值;运用一元二次方程根的判别式。例 1、A、B两点在直线 l 的同侧,在直线 L 上取一点 P,使 PA+PB 最小。分析:在直线 L 上任取一点 P,连结 A P,BP,在ABP 中 AP+BP AB,如果 AP+BP AB,则 P必在线段 AB上,而线段 AB与直线 L 无交点,所以这种思路错误。取点 A关于直线 L 的对称点 A,则 AP AP,在ABP中 AP+BPAB,当
3、 P移到 AB 与直线 L 的交点处 P点时 AP+BPAB,所以这时PA+P B最小。1 已知 AB是半圆的直径,如果这个半圆是一块铁皮,ABDC 是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC 的周长最大(图 391)?分析 本例是求半圆 AB的内接梯形的最大周长,可设半圆半径为R 由于 ABCD,必有 AC=BD 若设 CD=2y,AC=x,那么只须求梯形ABDC 的半周长 u=x+y+R的最大值即可解 作 DE AB于 E,则x2=BD2=AB BE 2R(R-y)2R2-2Ry,所以所以求 u 的最大值,只须求-x2+2Rx+2R2最大值即可-x2+2Rx+2R2=3R2-
4、(x-R)23R2,上式只有当 x=R时取等号,这时有文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2
5、F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G
6、2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R1
7、0J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6
8、F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W
9、2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1
10、R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2文档编码:CB6D1R10J4U7 HI4E4Z6F2F7 ZG2V2A3W2G2所以2y=R=x 所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60和 1202.如图 392是半圆与矩形结合而成的窗户,如果窗户的周长为8 米(m),怎样才能得出最大面积,使得窗户透光最好
11、?分析与解设 x 表示半圆半径,y 表示矩形边长 AD,则必有2x+2y+x=8,若窗户的最大面积为S,则把代入有即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大3.已知 P点是半圆上一个动点,试问 P在什么位置时,PA+PB 最大(图 393)?文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编
12、码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G
13、1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10
14、A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4
15、U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6
16、X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC1
17、0J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H
18、3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1分析与解因为 P点是半圆上的动点,当P近于 A或 B时,显然 PA+PB 渐小,在极限状况(P 与 A重合时)等于 AB 因此,猜想 P在半圆弧中点时,PA+PB 取最大值设 P为半圆弧中点,连 PB,PA,延长 AP到 C,使 PC=PA,连 CB,则 CB是切线为了证 PA+PB 最大,我们在半圆弧上另取一点P,连 PA,PB,延长 AP 到 C,使 PC=BP,连 CB,CC,则 PC B=PBC=PCB=45,所以 A,B,C,C四点共圆,所以 CC A=CBA=90,所以在 ACC 中,AC A
19、C,即 PA+PB PA+P B4 如图 394,在直角 ABC中,AD是斜边上的高,M,N分别是 ABD,ACD的内心,直线 MN交 AB,AC于 K,L求证:SABC2SAKL证 连结 AM,BM,DM,AN,DN,CN 因为在 ABC中,A=90,AD BC于 D,所以 ABD=DAC,ADB=ADC=90 因为 M,N分别是 ABD 和ACD 的内心,所以1=2=45,3=4,所以ADN BDM,又因为 MDN=90=ADB,所以MDN BDA,所以BAD=MND 由于 BAD=LCD,所以MND=LCD,所以 D,C,L,N四点共圆,所以ALK=NDC=45 同理,AKL=1=45,
20、所以 AK=AL 因为AKM ADM,所以AK=AD=AL而而从而文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10
21、A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4
22、U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6
23、X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC1
24、0J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H
25、3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编码:CX8G1P1G10A8 HZ4U9H5Q6X1 ZC10J1J6H3K1文档编
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年中考总结复习冲刺练:初中数学“最值问题”集锦 2022 年中 总结 复习 冲刺 初中 数学 问题 集锦
限制150内