2022年人教版高中数学必修2立体几何题型归类总结教学提纲 .pdf
《2022年人教版高中数学必修2立体几何题型归类总结教学提纲 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版高中数学必修2立体几何题型归类总结教学提纲 .pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人 教 版 高 中 数 学 必 修2 立 体 几 何 题 型 归 类总 结精品文档收集于网络,如有侵权请联系管理员删除立体几何题型归类总结一、考点分析基本图形1棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。L底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体 底面为矩形长方体底面为正方形正四棱柱侧棱与底面边长相等正方体2.棱锥棱锥有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。正棱锥如果有一个棱锥的底面是正多边形,并且顶点在底面的
2、射影是底面的中心,这样的棱锥叫做正棱锥。3球球的性质:球心与截面圆心的连线垂直于截面;顶点侧面斜高高侧棱底面OCDABHSl侧棱侧面底面EBDCAFBDEAFCrdR球面轴球心半径AOO1B文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W
3、2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文
4、档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM
5、4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y
6、3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK
7、2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J
8、8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 ZT10G8W2W8O7文档编码:CM4B2C3Y3T9 HK2C3Z2J8V10 Z
9、T10G8W2W8O7精品文档收集于网络,如有侵权请联系管理员删除22rRd(其中,球心到截面的距离为d、球的半径为 R、截面的半径为 r)球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决.球面积、体积公式:2344,3SR VR球球(其中 R 为球的半径)平行垂直基础知识网络异面直线所成的角,线面角,二面角的求法1求异面直线所成的角0,90:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移平行关系平面几何知线线平行线面平行面面平行垂直关系平面几何知线线垂直线面垂直面面垂直判性判定推论性判判性判面面垂直定1
10、.,/abab2.,/aabb3.,/aa4./,aa平行与垂直关系可互相转化ACDBCDOABOCAAc文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F1
11、0R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文
12、档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO
13、8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M
14、5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO
15、5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2
16、N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8精品文档收集于网络,如有侵权请联系管理员删除另一条与其相交;(
17、2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法二证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行;三计算:通过解三角形,求出异面直线所成的角;2 求直线与平面所成的角0,90:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用);二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。3 求二面角的平面角0,解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角;二证:证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线
18、法,垂面法);三计算:通过解三角形,求出二面角的平面角。二、典型例题考点一:三视图1一空间几何体的三视图如图1 所示,则该几何体的体积为 _.2 2 侧(左)视图2 2 2 正(主)视文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2
19、C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码
20、:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2
21、O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2
22、 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M1
23、0T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E
24、3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N
25、7F10R2C8精品文档收集于网络,如有侵权请联系管理员删除俯视图第 1 题2.若某空间几何体的三视图如图2 所示,则该几何体的体积是_.第 2题第 3 题3一个几何体的三视图如图3 所示,则这个几何体的体积为.4若某几何体的三视图(单位:cm)如图 4 所示,则此几何体的体积是.第 4 题第 5 题3 正视图俯视图1 1 2 左视图a 文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码:CO8H2O6M5A2 HO5M10T2N8E3 ZO2N7F10R2C8文档编码
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年人教版高中数学必修2立体几何题型归类总结教学提纲 2022 年人教版 高中数学 必修 立体几何 题型 归类 总结 教学 提纲
限制150内