平面向量全部讲义(共7页).doc
《平面向量全部讲义(共7页).doc》由会员分享,可在线阅读,更多相关《平面向量全部讲义(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一节平面向量的概念及其线性运算1向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模(2)零向量:长度为0的向量,其方向是任意的(3)单位向量:长度等于1个单位的向量(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线(5)相等向量:长度相等且方向相同的向量(6)相反向量:长度相等且方向相反的向量例1若向量a与b不相等,则a与b一定()A有不相等的模B不共线 C不可能都是零向量 D不可能都是单位向量例2.给出下列命题:若|a|b|,则ab;若A,B,C,D是不共线的四点,则等价于四边形ABCD为平行四边形;若ab,
2、bc,则ac;ab等价于|a|b|且ab;若ab,bc,则ac.其中正确命题的序号是()AB C DCA2向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:abba;(2)结合律:(ab)ca(bc)减法求a与b的相反向量b的和的运算叫做a与b的差三角形法则aba(b)数乘求实数与向量a的积的运算(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0( a)()a;()aaa;(ab)ab例3:化简得() A. B. C. D0 例4:(1)如图,在正六边形ABCDEF中,()A0B C
3、D(2)设D,E分别是ABC的边AB,BC上的点,ADAB,BEBC.若12 (1,2为实数),则12的值为_巩固练习:1将4(3a2b)2(b2a)化简成最简式为_ 2若|,则非零向量,的关系是() A平行 B重合 C垂直 D不确定3若菱形ABCD的边长为2,则|_4D是ABC的边AB上的中点,则向量等于()A B C D5若A,B,C,D是平面内任意四点,给出下列式子:;.其中正确的有() A0个 B1个 C2个 D3个6如图,在ABC中,D,E为边AB的两个三等分点,3a,2b,求,.DD 巩固练习 1。16a6b 2。C 3。2 4。A 5。C 6解:3a2b,D,E为的两个三等分点,
4、ab. 3aab2ab.2ababab.3共线向量定理:向量a(a0)与b共线等价于存在唯一一个实数,使得ba.例5已知a与b是两个不共线向量,且向量ab与(b3a)共线,则_例6设两个非零向量a与b不共线,(1)若ab,2a8b,3(ab),求证:A,B,D三点共线(2)试确定实数k,使kab和akb共线巩固练习:1给出下列命题:两个具有公共终点的向量,一定是共线向量两个向量不能比较大小,但它们的模能比较大小a0(为实数),则必为零,为实数,若ab,则a与b共线其中错误的命题的个数为()A1 B2 C3 D42.如图,已知a,b,3,用a,b表示,则()Aab B.ab C.ab D.ab3
5、已知向量a,b,c中任意两个都不共线,但ab与c共线,且bc与a共线,则向量abc()Aa Bb Cc D04如图,在ABC中,A60,A的平分线交BC于D,若AB4,且 (R),则AD的长为()A2 B3 C4 D55在ABCD中,a,b,3,M为BC的中点,则_(用a,b表示)6设点M是线段BC的中点,点A在直线BC外,216,|,则|_.例5 例6解(1)证明:ab,2a8b,3(ab),2a8b3(ab)2a8b3a3b5(ab)5.,共线,又它们有公共点B,A,B,D三点共线(2)kab与akb共线,存在实数,使kab(akb),即kabakb.(k)a(k1)b.a,b是不共线的两
6、个非零向量,kk10,k210.k1.C B D B ab 24向量的中线公式: 若P为线段AB的中点,O为平面内一点,则()5三点共线等价关系A,P,B三点共线 (0)(1t)t (O为平面内异于A,P,B的任一点,tR)xy (O为平面内异于A,P,B的任一点,xR,yR,xy1)第二节 平面向量的基本定理及坐标表示1平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1,2,使a1e12e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底2平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模:设a(x1,y1
7、),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2),a(x1,y1),|a|.(2)向量坐标的求法:若向量的起点是坐标原点,则终点坐标即为向量的坐标设A(x1,y1),B(x2,y2),则(x2x1,y2y1),|.3平面向量共线的坐标表示设a(x1,y1),b(x2,y2),其中b0.abx1y2x2y10.例7若A(0,1),B(1,2),C(3,4),则2_例8.已知点M(5,6)和向量a(1,2),若3a,则点N的坐标为()A(2,0)B(3,6) C(6,2) D(2,0)例9已知A(2,4),B(3,1),C(3,4)设a,b,c.(1)求3ab3c;(
8、2)求满足ambnc的实数m,n.巩固练习:1若向量a(1,1),b(1,1),c(4,2),则c() A3ab B3ab Ca3b Da3b2已知向量a(x,y),b(1,2),且ab(1,3),则|a|等于() A. B. C. D.3已知向量a(3,2),b(x,4),若ab,则x() A4 B5 C6 D74设点A(2,0),B(4,2),若点P在直线AB上,且|2|,则点P的坐标为()A(3,1) B(1,1) C(3,1)或(1,1) D无数多个5已知a(1,2),b(3,2),当kab与a3b平行时,k() A. B C D.6已知向量a(cos,sin),向量b(,1),则|2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 全部 讲义
限制150内