一元二次不等式及其解法典型例题透析.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《一元二次不等式及其解法典型例题透析.docx》由会员分享,可在线阅读,更多相关《一元二次不等式及其解法典型例题透析.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次不等式及其解法典型例题透析类型一:解一元二次不等式例1. 解下列一元二次不等式(1); (2); (3)思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答.解析:(1)方法一:因为所以方程的两个实数根为:,函数的简图为:因而不等式的解集是.方法二: 或解得 或 ,即或.因而不等式的解集是.(2)方法一:因为,方程的解为.函数的简图为:所以,原不等式的解集是方法二:(当时,)所以原不等式的解集是(3)方法一:原不等式整理得.因为,方程无实数解,函数的简图为:所以不等式的解集是.所以原不等式的解集是.方法二:原不等式的解集是.总结升华:1. 初学二次不等式的解法应尽量结合二次函
2、数图象来解决,培养并提高数形结合的分析能力;2. 当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题).3. 当二次项的系数小于0时,一般都转化为大于0后,再解答.举一反三:【变式1】解下列不等式(1) ;(2) (3) ; (4) .【答案】(1)方法一:因为方程的两个实数根为:,函数的简图为:因而不等式的解集是:.方法二:原不等式等价于, 原不等式的解集是:.(2)整理,原式可化为,因为,方程的解,函数的简图为:所以不等式的解集是.(3)方法一:因为方程有两个相等的实根:,由函数的图象为:原不等式的的解集是.方法
3、二: 原不等式等价于:, 原不等式的的解集是.(4)方法一:因为,方程无实数解,由函数的简图为:原不等式的解集是.方法二:, 原不等式解集为.【变式2】解不等式:【答案】原不等式可化为不等式组 ,即,即,解得原不等式的解集为.类型二:已知一元二次不等式的解集求待定系数例2. 不等式的解集为,求关于的不等式的解集。思路点拨:由二次不等式的解集为可知:4、5是方程的二根,故由韦达定理可求出、的值,从而解得. 解析:由题意可知方程的两根为和由韦达定理有,化为,即,解得,故不等式的解集为.总结升华:二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次 不等式 及其 解法 典型 例题 透析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内