高考文科数学中的内切球和外接球问题---专题练习(共8页).doc
《高考文科数学中的内切球和外接球问题---专题练习(共8页).doc》由会员分享,可在线阅读,更多相关《高考文科数学中的内切球和外接球问题---专题练习(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上内切球和外接球问题如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法)1、求正方体的外接球的有关问题例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为_ .解析:要求球的表面积,
2、只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径.故表面积为.例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为,则该球的体积为_.解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线,因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是所以球的半径为.故该球的体积为.2、求长方体的外接球的有关问题例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为,则此球的表面积为 .解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角
3、线正好为球的直径。长方体体对角线长为,故球的表面积为.例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ). A. B. C. D. 解析:正四棱柱也是长方体。由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,于是等同于例3,故选C.3.求多面体的外接球的有关问题例5. 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为,则这个球的体积为 .解 设正六棱柱的底面边长为,高为,则有 正六棱柱的底面圆的半径,球心到底面的距离.外接球的半径
4、.小结 本题是运用公式求球的半径的,该公式是求球的半径的常用公式.二、构造法(补形法)1、构造正方体例5 (2008年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是_.解析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法,所以三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,且侧棱长均相等,所以可构造正方体模型,如图1,则,那么三棱锥的外接球的直径即为正方体的体对角线,故所求表面积是.(如图1)例3 若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是 .解 据题意可知
5、,该三棱锥的三条侧棱两两垂直,把这个三棱锥可以补成一个棱长为的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为,则有.故其外接球的表面积.小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有.出现“墙角”结构利用补形知识,联系长方体。【原理】:长方体中从一个顶点出发的三条棱长分别为,则体对角线长为,几何体的外接球直径为体对角线长 即【例题】:在四面体中,共顶点的三条棱两两垂直,其长度分别为,若该四面体的四个顶点在一个球面上,求这个球的表面积。解:因为:长方体
6、外接球的直径为长方体的体对角线长所以:四面体外接球的直径为的长即: 所以球的表面积为图1例 6 (2003年全国卷)一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为( )A. B. C. D. 解析:一般解法,需设出球心,作出高线,构造直角三角形,再计算球的半径.在此,由于所有棱长都相等,我们联想只有正方体中有这么多相等的线段,所以构造一个正方体,再寻找棱长相等的四面体,如图2,四面体满足条件,即,由此可求得正方体的棱长为1,体对角线为,从而外接球的直径也为,所以此球的表面积便可求得,故选A. (如图2)例7(2006年山东高考题)在等腰梯形中,为的中点,将与分布沿、向上折起,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学 中的 内切球 外接 问题 专题 练习
限制150内