2022年植物生理学复习重点整理-山东农业大学.docx
《2022年植物生理学复习重点整理-山东农业大学.docx》由会员分享,可在线阅读,更多相关《2022年植物生理学复习重点整理-山东农业大学.docx(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 学习必备 欢迎下载内容提要一、名词说明:第一章植物水分代谢水势:打算细胞间水分移动的能量 渗透势:开放体系中溶液的水势叫做渗透势,它是水中由于溶质的存在而降低的水势 压力势:由于外界压力存在而是水势增加的值,它是正值 衬质势:由于亲水物质存在而降低的水势 水孔蛋白(水通道蛋白) :细胞膜上存在蛋白质组成的对水分特异的通透孔道 根压:植物根系生理活动促使水分从根部上升的压力 蒸腾拉力:由于蒸腾作用产生一系列水势梯度使导管中水分上升的力气 蒸腾效率:植物在肯定生长期内所积存的干物质与蒸腾失水量之比 蒸腾系数(需水量) :植物在肯定生长时期内的蒸腾失
2、水量与积存的干物质量之比 水分利用效率:植物每消耗单位水量生产干物质的量 水分临界期:植物一生中对水分亏缺最敏锐,最简洁受水分亏缺损害的时期 自由水:距胶粒较远,能自由移动的水分,参与各种代谢活动;束缚水:靠近胶粒并被紧密吸附而不易流淌 的水分,与植物抗性有关;移动的现象 渗透作用:水分通过挑选透性膜从高水势向低水势 二、自由水与束缚水:通常以自由水 /束缚水的比值做为衡量植物代谢强弱和植物抗逆性大小的指标之一;自由水 /束缚水比值高 , 植物代谢强度大 ;自由水 /束缚水比值低 , 植物抗逆性强;自由水参与各种代谢活动,自由水含量越高,植物的代谢越旺盛;束缚水不参与代谢活动,束缚水含量越高,
3、植物代谢活动越弱,越冬植物的休眠芽和干燥种子所含的水基本上是束缚水,这时的植物以柔弱的代谢活动度过不良的环境条件;三、植物细胞的水势: 典型植物细胞水势由三部分组成,由渗透势 S,压力势 P 和衬质势 m构成;即 W= S+ P+ m; S是由于液泡中溶有各种溶质而造成的; P是由于外界压力存在而使水势增加的值,它是正值;当细胞发生质壁分别时, P m 是由细胞内的亲水胶体对水分的吸附造成的;干种子萌发前的吸水就 为零;处在剧烈蒸发环境中的细胞 P 会成负值;细胞的 是靠吸胀作用, 分生组织中刚形成的幼嫩细胞,主要也是靠吸胀作用吸水;未形成液泡的细胞具有肯定的衬质势;但当液泡形成后,细胞内的亲
4、水胶体已被水分饱和,其衬质势已与液泡的渗透势达到平稳,所以成熟细胞的水势表示为 W S P; w= w- wo/Vw 现代水势的概念:每偏摩尔体积水的化学势与纯水化学势之差;植物细胞吸水主要由两种形式,一种是渗透性吸水,一种是吸胀性吸水;未形成液泡的细胞靠吸胀性吸水,形成液泡的成熟细 胞主要靠渗透性吸水;四、植物细胞是一个渗透系统:植物细胞具备了构成渗透系统的条件;一个成长的植物细胞壁对水分和溶质都是可以自由通透的;但细胞壁以内的质膜和液泡膜却是一种挑选透性膜,它把液泡中的溶液与环境中的溶液隔开,假如液泡的水势与环境水势存在 水势差,水分便会在环境和液泡之间发生渗透作用;质壁分别现象说明白生活
5、细胞的原生质具有挑选透性;细胞死后,原生质层的 结构被破坏,丢失了挑选透性;可以用质壁分别现象来鉴定细胞的死活,仍可用来测定细胞的渗透势等;五、水分的移动 :水分进出细胞取决于细胞与其外界的水势差;相邻细胞间的水分移动同样取决于相邻细胞间的水势差;水分总 是从水势高的一端流向水势低的一端;植物组织和器官间的水分移动也符合这个规律;水分跨膜运转与水通道蛋白 细胞膜是由两层膜脂分子和蛋白质紧密排列而成,而水分子是极性很强的不溶于脂类的分子, 定义为 水分无法单靠通过穿越脂质的扩散实现快速跨膜运转;细胞膜上存在由蛋白质组成的对水分特异的通透孔道,为膜内蛋白 水通道蛋白,也称为水孔蛋白(aquapor
6、in),水通道蛋白只答应水分子通过,不答应离子和代谢物通过;水通道跨膜运输水分的能 力可以被磷酸化和水通道蛋白的合成速度所调剂,在水通道蛋白的氨基酸残基上加上或除去磷酸就可以转变其对水的通透性,从而 调剂细胞膜对水分的通透性;由于水孔蛋白的存在,它能使水分快速透过膜脂双层,调控水分快速进出细胞;: 根系吸水分为主动吸水和被动吸水两种方式;六、根系吸水的机理 1、根压与主动吸水: 由于根系生理活动引起的水分吸取称为主动吸水;植物根系生理活动促使水分从根部上升的压力称为根 压,根压的存在可以通过伤流和吐水两种现象证明;根系主动吸水过程中如何建立跨内皮层的水势梯度(或根压产生的机制、根压产生的渗透机
7、制、为什么导管内的水势低于外液 的水势)?土壤溶液中的水分可以在内皮层以外的质外体中自由扩散,但当扩散到内皮层时便被凯氏带拦住,水分要进入中柱,只 有通过内皮层的原生质,整个内皮层细胞就象一圈挑选透性膜把中柱与皮层隔开,只要中柱中的水分与皮层中的水分存在水势差,水分便会通过渗透作用进出中柱;问题在于植物怎样使中柱中的水势低于皮层的水势;根系皮层的薄壁细胞利用呼吸产生的能量,主动地吸取土壤和质外体中的离子,并将吸取的离子通过胞间联丝主动转运至内皮层内的中柱中去;使导管中的离子浓度上升,水名师归纳总结 - - - - - - -第 1 页,共 32 页精选学习资料 - - - - - - - -
8、- 学习必备 欢迎下载势降低;这样就建立了一个跨过内皮层的水势梯度,水分就会通过渗透作用进入中柱,产生根压;主动吸水实际上并不是根系直接 主动吸取水分,而是根系利用代谢能量主动吸取外界的矿质,造成导管内水势低于外界水势,而水就是自发地顺水势梯度从外部进 入导管;水分吸取的真正动力是水势差;如何用试验证明植物根系存在主动吸水过程?主动吸水与呼吸速率亲密相关;良好的通气条件及呼吸促进剂能促进植物的伤 流,而抑制呼吸的因素如呼吸抑制剂、低温、缺氧等,均能降低植物的伤流;2、被动吸水 是由于枝叶蒸腾引起的根部吸水,吸水的动力来自于蒸腾拉力;与植物根的代谢活动无关;用高温或化学药剂将 植物的根杀死,植物
9、照样从环境中吸水;由于蒸腾作用产生一系列水势梯度使导管中水分上升的力气称为蒸腾拉力;七、蒸腾作用与气孔运动:植物进化过程中形成的气孔运动有何意义?蒸腾和 CO2 同化都是通过气孔进行的,这就形成了一对 冲突,植物既要多吸取 CO2,又要削减水分缺失;植物在长期进化中形成了一种机制,即在最有利 CO2 快速同化时气孔张开;在最 有利于水分快速散失时气孔关闭;现已知道气孔运动是一种膨压运动,由保卫细胞调剂;保卫细胞具有整套细胞器;与其它表皮细胞明显不同的是保卫细胞含有叶绿体,在光下能进行光合作用;特殊指出的是,保卫 细胞中含有相当多的淀粉体,在光下淀粉削减,在黑暗中淀粉积存,这与正常的叶肉细胞恰好
10、相反;1 气孔运动的机理:目前得到较多试验支持的是“ 蓝光信号K蔗糖” 机制:蓝光信号调控气孔运动:光是影响气孔运动的最主要的环境因子之一,正常条件下大多数植物的气孔总是在光下张开、黑暗中关闭;保卫细胞存在光受体,能感受蓝光信号;蓝光通过光受体可以激活质膜上的H+-ATP 酶,将胞内的质子泵出胞外,建立跨膜的质子电动势pmf,这种跨膜的质子电动势驱动保卫细胞外面K通过质膜上的内向K通道进入保卫细胞,这是一种K的主动运输机制; K的进入降低了保卫细胞的水势而吸水,通过膨压运动使气孔开启;这是光诱导气孔开放的主要效应; K、苹果酸与气孔运动:在照光下,保卫细胞质膜上的 H- ATP 酶做功,将 H
11、从保卫细胞内排到细胞外,建立跨膜的质子电动势,驱动保卫细胞外面 K通过质膜上的内向 K 通道进入保卫细胞,在 K进入保卫细胞的同时,仍相伴着负电荷 Cl进入,进一步降低了保卫细胞的水势,促进吸水使气孔张开;Cl是通过 Cl - K 共转运载体进入保卫细胞的;与 K交换的 H来自苹果酸,在照光下,保卫细胞 pH 上升活化了淀粉磷酸化酶,导致淀粉水解成磷酸葡萄糖,葡萄糖经糖酵解途径转变成 PEP,光下由 PEP 羧化酶催化 PEP 与 CO2 反应,形成草酰乙酸并转变成苹果酸,苹果酸解离成酸根和 2 个 H,在 H /K离子泵的驱动下,H与 K 进行交换,而苹果酸根离子就进入保卫细胞的液泡内,和
12、Cl 共同与进来的 K 保持电化学的平稳,同时也可降低保卫细胞的水势;所以 K的进入和苹果酸的形成共同造成保卫细胞水势的下降,导致气孔张开; 蔗糖与气孔运动:连续观测气孔在一天中的变化发觉,当气孔在上午逐步开放时,保卫细胞内 K含量逐步上升,但是下午较早时,当气孔导度仍旧在增加时,K含量却已经开头下降了,而在 K含量逐步下降的过程中,蔗糖的含量却在逐步增加,成为保卫细胞内的主要渗透调剂物质,当气孔在下午较晚关闭时,蔗糖的含量也随着下降;这个结果说明,气孔的张开与 K 的吸取有关,而气孔开放的维护和气孔关闭就与蔗糖浓度的变化有关;2、影响气孔运动与蒸腾的环境因素主要有:光照、 CO2、水分状况、
13、叶温等;光照:除 CAM 植物以外,气孔一般昼开夜闭;照光促进气孔张开;蓝光对气孔开放的诱导作用比红光更为有效;蓝光通过光受体可以激活质膜上的 H+-ATP 酶,建立跨膜的质子电动势,驱动 K 进入保卫细胞使气孔开启;CO 2:一般来讲, CO2 含量削减时气孔张开,而当 CO2 浓度增加时气孔便关闭;气孔会对细胞间隙 CO 2浓度( Ci)上升做出响应而关闭,以削减不必要的水分散失;而当 Ci 下降时,便促进气孔张开,加速 CO2 向叶肉中的扩散速度以维护较高的光合速率;水分状况:水分状况是直接影响气孔运动的关键条件;由于叶片蒸腾导致叶肉细胞和保卫细胞水势下降,进而引起气孔关闭的过程称为 气
14、孔的反馈调剂;而在叶片水势尚未降低之前,气孔便能感知到空气湿度下降(叶片-大气水气压亏缺 VPD )和土壤水分亏缺的信号而提前关闭,削减蒸腾失水,气孔的这种功能称之为 前馈调剂 ;现已知道,受旱根系产生信号物质 ABA 运到地上部分导致气孔关闭;叶温: 气孔导度一般随温度的上升而增大,在 30左右达最大值;35以上的高温会使气孔导度变小,很多植物的气孔在高温低湿的中午开头关闭;近于 0的低温,即使其它条件都相宜,气孔也不张开;总之,植物的气孔导度对环境因素变化响应的结果,是通过调剂气孔在适当时刻的开关,尽可能削减水分缺失,而保证最大的CO2同化量,使全天的水分利用效率达到最高;有人把气孔的这种
15、行为称为气孔的最优化调剂;为什么说 CO 2 是一种最好的抗蒸腾剂?一般来讲, CO2 含量削减时,气孔张开;而当 CO2 浓度增加时气孔便关闭;提高 CO2浓度既可使气孔关闭,削减蒸腾,又不会限制光合作用;由于气孔导度削减对 CO2 造成的扩散阻力,会被 CO2 浓度增加所促进的扩散速率所抵消;此外,CO2 仍能抑制光呼吸,增加光合产物的净积存;八、植物需水量及水分利用效率:需水量就是指植物的蒸腾系数;不同类型的植物、同种植物的不同生育期需水量是不同的;C4植物的需水量低于 C3 植物的需水量;光合效率越高的植物,需水量就越低;植物的需水量不等于灌水量,由于灌水不仅要满意生理用水,仍要满意生
16、态用水等;水分利用效率笼统地讲是指植物每消耗单位水量生产干物质的量(或同化CO2 的量),可分为三个层次:植物瞬时水分利用效率是某一时刻光合速率与蒸腾速率之比,即第 2 页,共 32 页名师归纳总结 - - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载某一时刻的蒸腾效率; 植物长期水分利用效率指肯定时间内植物积存干物质量与蒸腾失水量之比,是指较长一段时间的蒸腾效率;农田水分利用效率指肯定时间内植物积存的干物质与植物蒸腾失水和田间蒸发失水量之和(蒸发蒸腾量)之比;一、名词说明:其次章植物的矿质养分电化学势梯度 离子载体 离子通道 离子泵 离子转运蛋白 原
17、初主动转运 次级主动转运 共转运 质子动力势( pmf )单盐毒害 离子拮抗 再利用元素 植物养分最大效率期 养分临界期NR 二、植物必需的元素及其确定方法:所谓植物的必需元素是指植物正常生长发育必不行少的元素;植物必需元素必需具备三 条标准:不行缺少性,植物假如缺乏这种元素就不能正常生长发育,甚至不能完成其生活史;不行替代性,植物缺乏该元素就 会出现出特有的缺乏症,且这种缺乏症只有加入该元素后才能预防或复原;直接功能性,该元素对植物生长发育的影响必需是该 元素直接作用的成效,而不是通过转变植物生长的环境条件(如土壤的理化性质或培育基等)所产生的间接成效;要确定哪些矿质元素为植物所必需,必需在
18、人为严格掌握的条件下培育植物,对比必需元素的三条标准,逐一分析各种元素;pH值等;常用的植物培育方法有溶液培育法和砂基培育法;溶液培育时应重点留意:通气良好、试剂介质纯洁无污染、相宜的 无论是水培法仍是砂培法,第一必需保证培育植株正常生长的溶液是平稳溶液;所谓平稳溶液是指含有植物生长发育所需的各 种必需元素,并且比例得当、浓度合适的养分液;在讨论植物必需的矿质元素时,可在配制的养分液中除去或加入某一元素,假如 在平稳溶液中,除去某一元素,植物生长发育不良,并显现特有的病征,当加入该元素后,症状消逝,就说明该元素为植物的必需 元素;反之,如减去某一元素对植物生长发育无不良影响,即表示该元素并非植
19、物必需元素;19种,除碳、氢、氧外的 依据判定必需元素三条标准,借助溶液培育法或砂基培育法等分析手段,现已确定植物的必需元素有16种为矿质元素,分为大量元素(N、P、K 、 Ca、Mg、S、Si)和微量元素( Fe、B、 Cu、 Zn、Mn 、 Mo、Cl、Ni 、Na);三、植物必需矿质元素的生理作用及其缺乏症: 必需元素在植物生长发育中的生理功能概括起来主要有:细胞结构物质 的组成成分;如 N、P、S等是蛋白质、核酸、磷脂、叶绿体色素、ATP等的组分;生命活动的调剂者,作为酶的成分或活化剂、K+、Ca2+等;维护细胞电化学平稳、适当 电子载体,如 Mg、 Fe、 Cu、Mn、 Mo等;作为
20、渗透调剂物质调剂细胞的膨压等,如 的跨膜电位等,如 K+、 Cl等;作为细胞信号转导信使,如 Ca2+为重要的其次信使;这就是所谓的养分失调症;任何一种必需元素缺乏或过多时,植物的代谢都会受到影响,进而在植物的外观上表现出不良症状,其中元素缺乏所导致的失调症称为养分缺乏症或缺素症,元素过多所导致的失调症称为养分中毒症:1、氮:氮是植物需求量最大的矿质元素,是构成蛋白质、核酸和磷脂的主要成分,也是叶绿素的成分,被称为生命元素;缺 氮时,蛋白质、核酸、磷脂等合成受阻,植株矮小,叶片小而薄,叶色变黄,分枝少,花少,籽实不饱满,产量低;由于氮在植物 体中移动性大,缺氮症状第一从老叶中表现出来,逐步向幼
21、叶进展;氮肥过多就易导致叶片大而深绿,养分体徒长,成熟期推迟;氮素过多时,大部分糖与氮形成蛋白质,而小部分糖形成纤维素、木质素等,造成细胞质丰富而壁薄,茎部机械组织不发达,易倒 伏,易受病虫侵害,植株抗逆性差;2、磷:缺磷影响细胞分裂,使分蘖、分枝削减,植株矮小,叶色暗绿或紫红;磷在体内易移动,缺磷的症状第一在下部老叶 显现,并逐步向上进展;磷肥过多时,叶片会显现小焦斑,这是磷酸钙沉淀所致;3、钾:钾是调剂渗透势的最重要组分而参与细胞吸水和气孔运动,是细胞中最重要的电荷平稳成分而在维系细胞跨膜电位中 有不行替代的作用;缺钾时,植株茎杆脆弱,易倒伏,抗旱、抗寒性降低;缺钾时仍会显现叶缘焦枯生长缓
22、慢现象,由于叶中部生长仍较快, 所以整个叶子会形成杯状弯曲或皱缩;钾在体内以 K+存在,是易移动可被重复利用的元素,缺素症第一显现在下部老叶;名师归纳总结 第 3 页,共 32 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载4、钙:钙是重要的其次信使;钙的移动性特别差,缺钙植株的顶芽、侧芽、根尖等分生组织第一显现缺素症,易腐烂死亡,即生长点坏死;5、镁:镁是叶绿素的重要组分之一、镁是光合作用及呼吸作用中很多酶如 RuBP 羧化酶等的活化剂等;缺镁导致叶绿素合成 受阻,造成叶片失绿,往往叶肉变黄而叶脉仍保持绿色;镁在植物体中也是易移动可被重复利用
23、的元素,所以缺素症状第一从下部 老叶显现;6、硫:硫在植物体中不易移动,缺乏时一般幼叶表现缺绿症状;7、硅:在木贼科、禾本科中含量很高;硅的生理作用包括增强细胞壁、对禾谷类作物生殖器官的形成有促进作用、能削减许 多金属(如铝和锰等)的毒性;缺硅时植物蒸腾加快,生长受阻,简洁倒伏或受真菌感染,特殊是水稻;8、铁:铁的生理作用包括铁是很多与氧化仍原有关的重要酶的辅基而发挥电子传递功能、Fe 2+是合成叶绿素过程中酶的激活 剂并维护叶绿体结构;铁是不易移动和不易重复利用的元素,因而缺铁最明显的症状是幼芽幼叶缺绿发黄,甚至变为黄白色,而下 部叶片仍为绿色,果树缺铁易显现“ 黄叶病” ;9、锰:锰参与光
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 植物 生理学 复习 重点 整理 山东 农业大学
限制150内