高考数学专题:空间向量与立体几何(共14页).doc
《高考数学专题:空间向量与立体几何(共14页).doc》由会员分享,可在线阅读,更多相关《高考数学专题:空间向量与立体几何(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上立体几何中的向量方法1.(2012年高考(重庆理)设四面体的六条棱的长分别为1,1,1,1,和,且长为的棱与长为的棱异面,则的取值范围是()ABCD解析 以O为原点,分别以OB、OC、OA所在直线为x、y、z轴, 则,A , 2. (2012年高考(陕西理)如图,在空间直角坐标系中有直三棱柱,则直线与直线夹角的余弦值为()ABCD解析:不妨设,直线与直线夹角为锐角,所以余弦值为,选A. 3.(2012年高考(天津理)如图,在四棱锥中,丄平面,丄,丄,.()证明丄;()求二面角的正弦值;()设E为棱上的点,满足异面直线BE与CD所成的角为,求AE的长.【命题意图】本小题
2、主要考查空间两条直线的位置关系,二面角、异面直线所成的角,直线与平面垂直等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力. 方法一:(1)以为正半轴方向,建立空间直角左边系则(2),设平面的法向量则 取是平面的法向量得:二面角的正弦值为(3)设;则, 即方法二:(1)证明,由平面,可得,又由,故平面,又平面,所以. (2)解:如图,作于点,连接,由,可得平面.因此,从而为二面角的平面角. 在中,由此得,由(1)知,故在中,因此,所以二面角的正弦值为. 4.(2012年高考(新课标理)如图,直三棱柱中,是棱的中点,(1)证明:(2)求二面角的大小.第一问
3、省略第二问:如图建系: A(0,0,0),P(0,0,),M(,0), N(,0, 0),C(,3,0). 设Q(x,y,z),则. ,. 由,得:. 即:. 对于平面AMN:设其法向量为. . 则. . 同理对于平面AMN得其法向量为. 记所求二面角AMNQ的平面角大小为, 则. 所求二面角AMNQ的平面角的余弦值为. 5.(2011年安徽)如图,为多面体,平面与平面垂直,点在线段上,OAB,,,都是正三角形。()证明直线;(II)求棱锥FOBED的体积。本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和
4、运算求解能力.来源:Z,xx,k.Com来源:Z.xx.k.Com(I)(综合法)证明:设G是线段DA与EB延长线的交点. 由于OAB与ODE都是正三角形,所以=,OG=OD=2,同理,设是线段DA与线段FC延长线的交点,有来源:Z&xx&k.Com又由于G和都在线段DA的延长线上,所以G与重合.=在GED和GFD中,由=和OC,可知B和C分别是GE和GF的中点,所以BC是GEF的中位线,故BCEF.(向量法)过点F作,交AD于点Q,连QE,由平面ABED平面ADFC,知FQ平面ABED,以Q为坐标原点,为轴正向,为y轴正向,为z轴正向,建立如图所示空间直角坐标系.由条件知则有所以即得BCEF
5、. (II)解:由OB=1,OE=2,而OED是边长为2的正三角形,故 所以过点F作FQAD,交AD于点Q,由平面ABED平面ACFD知,FQ就是四棱锥FOBED的高,且FQ=,所以6.(2011年北京) 如图,在四棱锥中,平面,底面是菱形,.()求证:平面()若求与所成角的余弦值;()当平面与平面垂直时,求的长. 证明:()因为四边形ABCD是菱形,所以ACBD.又因为PA平面ABCD.所以PABD.所以BD平面PAC.()设ACBD=O.因为BAD=60,PA=PB=2,所以BO=1,AO=CO=.如图,以O为坐标原点,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 专题 空间 向量 立体几何 14
限制150内