高中数列知识点、解题方法和题型大全(共76页).doc
《高中数列知识点、解题方法和题型大全(共76页).doc》由会员分享,可在线阅读,更多相关《高中数列知识点、解题方法和题型大全(共76页).doc(76页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数列知识点、解题方法和题型大全一 高中数列知识点总结一 高中数列知识点总结 1. 等差数列的定义与性质定义:(为常数),等差中项:成等差数列前项和性质:是等差数列(1)若,则(2)数列仍为等差数列,仍为等差数列,公差为;(3)若三个成等差数列,可设为(4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值. 当,由可得达到最小值时的值. (6)项数为偶数的等差数列,有,.(7)项数为奇数的等差数列,有, ,.2. 等比数列的定义与性质定义
2、:(为常数,),.等比中项:成等比数列,或.前项和:(要注意!)性质:是等比数列(1)若,则(2)仍为等比数列,公比为.注意:由求时应注意什么?时,;时,.二 解题方法1 求数列通项公式的常用方法(1)求差(商)法如:数列,求解 时, 时, 得:,练习数列满足,求注意到,代入得;又,是等比数列,时,(2)叠乘法 如:数列中,求解 ,又,.(3)等差型递推公式由,求,用迭加法时,两边相加得练习数列中,求()(4)等比型递推公式(为常数,)可转化为等比数列,设令,是首项为为公比的等比数列,(5)倒数法如:,求由已知得:,为等差数列,公差为,(附:公式法、利用、累加法、累乘法.构造等差或等比或、待定
3、系数法、对数变换法、迭代法、数学归纳法、换元法)2 求数列前n项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求解:由练习求和:(2)错位相减法若为等差数列,为等比数列,求数列(差比数列)前项和,可由,求,其中为的公比. 如: 时,时,(3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加. 相加练习已知,则 由原式(附:a.用倒序相加法求数列的前n项和如果一个数列an,与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果
4、,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。b.用公式法求数列的前n项和对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。c.用裂项相消法求数列的前n项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。d.用错位相减法求数列的前n项和错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列anbn中,an成等差数列,bn成等比
5、数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。e.用迭加法求数列的前n项和迭加法主要应用于数列an满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。f.用分组求和法求数列的前n项和所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。g.用构造法求数列的前n项和所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造
6、出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。) 三 方法总结及题型大全方法技巧数列求和的常用方法一、直接(或转化)由等差、等比数列的求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 等差数列求和公式: 2、等比数列求和公式: 4、例1(07高考山东文18)设是公比大于1的等比数列,为数列的前项和已知,且构成等差数列(1)求数列的等差数列(2)令求数列的前项和解:(1)由已知得解得设数列的公比为,由,可得又,可知,即,解得由题意得故数列的通项为(2)由于由(1)得, 又是等差数列故练习:设Sn1+2+3+n,nN*,求的最大值. 解:由等差数列求和公式得 ,
7、 (利用常用公式) 当 ,即n8时,二、错位相减法设数列的等比数列,数列是等差数列,则数列的前项和求解,均可用错位相减法。例2(07高考天津理21)在数列中,其中()求数列的通项公式;()求数列的前项和;()解:由,可得,所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为()解:设,当时,式减去式,得,这时数列的前项和当时,这时数列的前项和例3(07高考全国文21)设是等差数列,是各项都为正数的等比数列,且,()求,的通项公式;()求数列的前n项和解:()设的公差为,的公比为,则依题意有且解得,所以,(),得,三、逆序相加法把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的
8、推广)例4(07豫南五市二联理22.)设函数的图象上有两点P1(x1, y1)、P2(x2, y2),若,且点P的横坐标为.(I)求证:P点的纵坐标为定值,并求出这个定值;(II)若(III)略(I),且点P的横坐标为.P是的中点,且由(I)知,(1)+(2)得:四、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)(2)(3)等。例5 求数列的前n项和.解:设 (裂项) 则 (裂项求和) 例6(06高考湖北卷理17)已知二次函数的图像经过坐标原点,其导函数为,数列的
9、前n项和为,点均在函数的图像上。()求数列的通项公式;()设,是数列的前n项和,求使得对所有都成立的最小正整数m;解:()设这二次函数f(x)ax2+bx (a0) ,则 f(x)=2ax+b,由于f(x)=6x2,得a=3 , b=2, 所以 f(x)3x22x.又因为点均在函数的图像上,所以3n22n.当n2时,anSnSn1(3n22n)6n5.当n1时,a1S13122615,所以,an6n5 ()()由()得知,故Tn(1).因此,要使(1)an-a(n-1)=3(n-1) 同样a(n-1)-a(n-2)=3(n-2) a(n-2(-a(n-3)=3(n-3) a3-a2=32 a2
10、-a1=31 以上的n个等式的两边相加得到 An-a1=3+32+3(n-1)=3(1-3n-1)/(1-3)=(3n-1)/21判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n2的任意自然数,验证为同一常数。(2)通项公式法:若 =+(n-1)d=+(n-k)d ,则为等差数列;若 ,则为等比数列。(3)中项公式法:验证中项公式成立。2. 在等差数列中,有关的最值问题常用邻项变号法求解:(1)当0,d0时,满足的项数m使得取最大值.(2)当0时,满足的项数m使得取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。3.数列求和的常用方法:公式法、裂项相消法、错位相减法
11、、倒序相加法等。注意事项1证明数列是等差或等比数列常用定义,即通过证明 或而得。2在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。3注意与之间关系的转化。如:= , =4解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略【问题1】等差、等比数列的项与和特征问题例1.数列的前项和记为()求的通项公式;()等差数列的各项为正,其前项和为,且,又成等比数列,求本小题主要考察等差数列、等比数列的基础知识,以及推理能力与运算能
12、力。解:()由可得,两式相减得又 故是首项为,公比为得等比数列 ()设的公比为 由得,可得,可得故可设 又由题意可得 解得等差数列的各项为正, 例2.设数列的前项和为,且对任意正整数,。(1)求数列的通项公式?(2)设数列的前项和为,对数列,从第几项起?.解(1) an+ Sn=4096, a1+ S1=4096, a1 =2048. 当n2时, an= SnSn1=(4096an)(4096an1)= an1an = an=2048()n1. (2) log2an=log22048()n1=12n, Tn=(n2+23n). 由Tn,而n是正整数,于是,n46. 从第46项起Tn509.【问
13、题2】等差、等比数列的判定问题例3.已知有穷数列共有2项(整数2),首项2设该数列的前项和为,且2(1,2,21),其中常数1(1)求证:数列是等比数列;(2)若2,数列满足(1,2,2),求数列的通项公式;(3)若(2)中的数列满足不等式|4,求的值(1) 证明 当n=1时,a2=2a,则=a; 2n2k1时, an+1=(a1) Sn+2, an=(a1) Sn1+2, an+1an=(a1) an, =a, 数列an是等比数列. (2) 解:由(1) 得an=2a, a1a2an=2a=2a=2, bn=(n=1,2,2k).(3)设bn,解得nk+,又n是正整数,于是当nk时, bn.
14、 原式=(b1)+(b2)+(bk)+(bk+1)+(b2k) =(bk+1+b2k)(b1+bk) =. 当4,得k28k+40, 42k4+2,又k2,当k=2,3,4,5,6,7时,原不等式成立. 例 4。已知数列中,是其前项和,并且,设数列,求证:数列是等比数列;设数列,求证:数列是等差数列;求数列的通项公式及前项和。分析:由于b和c中的项都和a中的项有关,a中又有S=4a+2,可由S-S作切入点探索解题的途径解:(1)由S=4a,S=4a+2,两式相减,得S-S=4(a-a),即a=4a-4a(根据b的构造,如何把该式表示成b与b的关系是证明的关键,注意加强恒等变形能力的训练)a-2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 数列 知识点 解题 方法 题型 大全 76
限制150内