2022年《“基本不等式”省优质课比赛教学设计及反思》.docx
《2022年《“基本不等式”省优质课比赛教学设计及反思》.docx》由会员分享,可在线阅读,更多相关《2022年《“基本不等式”省优质课比赛教学设计及反思》.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载“基本不等式 ab a2 b” 教学设计一 教材分析本节课选自一般高中课程标准数学教科书 数学(5)(人教 A 版)第三章第 4 节第一课时,主要内容为基本不等式 ab a b的推导与简洁应用它以前面已学习的有关不等式的基本学问为依据,从2利用基本不等式 ab a b求最值这个侧面来表达基本不等式 ab a b的应用,而且在基本不等式2 2a bab 的推导过程中渗透了分析法的解题方法,为同学后续学习推理与论证的内容埋下伏笔,同时2在公式推导过程中渗透数形结合等思想方法,此内容都是同学今后学
2、习中必备的数学素养二学情分析同学有了不等式的基本学问作为铺垫,对不等式的学习已具备基本的熟悉,而基本不等式来自生活,是从生活中抽象而来的,只要我们选材得当,能够激发同学的学习爱好,同学也能够较简洁懂得基本不等式的推导,且达到渗透数学思想、关注数学文化的目的三 目标分析教学目标:1学会推导并把握基本不等式,懂得基本不等式的几何意义,并把握定理中的不等号“ ” 取等号的条件是:当且仅当这两个数相等2探究并明白基本不等式的证明过程,在基本不等式的证明过程体会从特别到一般的思维过程,领悟数形结合思想的应用3培育同学生活问题数学化,并注意运用数学解决生活中实际问题的意识,有利于数同学活化、大众化,同时通
3、过同学自身的探究争论,领会猎取新知的欢乐教学重难点:本节课教学重点是应用数形结合的数学思想懂得基本不等式,并从不同角度探究不等式aba2b的证明过程教学难点是基本不等式aba2b等号成立条件四教学策略本课在设计上采纳了由特别到一般、从详细到抽象的教学策略利用数形结合、类比归纳的思想,层层深化,通过同学自主探究,分析、整理出推导公式的不同思路同时,借助多媒体的直观演示,帮忙学生懂得,并通过老师的点拨引导,师生互动、讲练结合,从而突出重点、突破难点教法 :问题引导、启示探究和归纳总结相结合 第 1 页,共 7 页 细心整理归纳 精选学习资料 - - - - - - - - - - - - - -
4、- - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载学法 : 自主学习与合作争论相结合教学手段 : 黑板板书为主结合多媒体帮助教学五教学过程创设情境 引入课题填写下表,ababa2bab 与a2b 的大小关系112811441622 【问题 1】观看ab 与a2b 的大小关系,从中你发觉了什么结论?猜想得到结论:一般的,假如a b+ R ,那么aba2b 当且仅当ab 时取号【问题 2】你能给出它的证明吗?证法 1 用比较法证明: =ababb2b22abb作差21a2变形2 =1ab0a时取判定符号2
5、a,即取等条件当且仅当证法 2 用分析法证明:要证aa2bab 1 (3)只要证ab2ab 2 要证( 2),只要证ab2ab0 要证( 3),只要证( 4)ab20明显,(4)是成立的当且仅当b 时,(4)中的等号成立设计意图 : 细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 2 页,共 7 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载通过引导,让同学去证明猜想的结果,进一步巩固比较两个 代数式 大小的方法,并让同学明白归纳、猜想、证明是我们发觉世
6、界、认知世界的重要的思维方法师归纳:(1)假如把 a b 看作是正数 a b 的等差中项,ab 看作是正数 a b 的等比中项,那么该定理可以2表达为:两个正数的等差中项不小于它们的等比中项 . (2)在数学中,我们称 a b 为 a b 的算术平均数,称 ab 为 a b 的几何平均数 . 本节定理仍可表达2为:两个正数的算术平均数不小于它们的几何平均数 . 自主探究 深化熟悉1. 熟悉基本不等式的几何背景【问题 3】能否给基本不等式一个几何说明呢?探究:课本第 110 页的“ 探究”在 右 图 中 , AB 是 圆 的 直 径 , 点 C 是 AB 上 的 一 点 ,AC a , BC b
7、 过点 C 作垂直于 AB 的弦 DE ,连接 AD 、 BD 你能利用这个图形得出基本不等式a bab 的几何说明吗?2易证 Rt ACD Rt DCB ,那么 CD 2CA CB ,即 CD ab .这个圆的半径为 a b,明显,它大于或等于 CD ,即 a b ab,2 2其中当且仅当点 C与圆心重合,即 a b时,等号成立 . 因此:基本不等式 ab a b几何意义是“ 半径不小于半弦”2设计意图 : 通过呈现均值不等式的几何直观说明,培育同学数形结合的意识,并使抽象的问题更加直观、形象,使同学进一步加深对均值不等式的懂得2. 拓广探究(呈现并介绍古代弦图)同学们现在看到的是中国古代数
8、学中闻名的一副图,叫做弦图它是由我国三国时期的数学家赵爽设计的早在1300 多年以前,这位数学家就奇妙的利用弦图中的面积关系证明白勾股定理,这是世界上最早证明勾股定理的方法之一弦图不仅造型美观,而且隐藏着许多玄机细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 7 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备欢迎下载24 届国际数学家(呈现 24 届国际数学家大会会标)大家现在看到的是20XX 年在我们北京召开的第大会的会标这个会标设计源于古代弦图它的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- “基本不等式”省优质课比赛教学设计及反思 2022 基本 不等式 省优 比赛 教学 设计 反思
限制150内