2022年初中几何知识点总结非常全.docx
《2022年初中几何知识点总结非常全.docx》由会员分享,可在线阅读,更多相关《2022年初中几何知识点总结非常全.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 证明(一)学习必备欢迎下载,但顶角可为钝角(或直角);等腰三角形的其他性质:1、本套教材选用如下命题作为公理:等腰直角三角形的两个底角相等且等于45等腰三角形的底角只能为锐角,不能为钝角(或直角)(1)、两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行;(2)、两条平行线被第三条直线所截,同位角相等;(3)、两边及其夹角对应相等的两个三角形全等;(4)、两角及其夹边对应相等的两个三角形全等;等腰三角形的三边关系:设腰长为 a,底边长为 b,就 ba 2等腰三角形的三角关系:设顶角为顶角为A ,底角为 B、 C,就(5)、三边对应相等
2、的两个三角形全等; A=180 2B, B=C=1802A;(6)、全等三角形的对应边相等、对应角相等;此外,等式的有关性质和不等式的有关性质都可以看做公理;2、等腰三角形的判定方法2、平行线的判定定理1 假如一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)公理两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行;2 有两条边相等的三角形是等腰三角形. 简洁说成:同位角相等,两直线平行;三、等边三角形定理两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行;性质:(1)等边三角形的三个角都相等,并且每个角都等于60 ;简洁说成:同旁内角互补,两直线平行;
3、( 2)三线合一定理两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行;判定方法:(1)三条边都相等的三角形是等边三角形简洁说成:内错角相等,两直线平行;( 2)三个角都相等的三角形是等边三角形3、平行线的性质定理( 3)有一个角是60 的等腰三角形是等边三角形;四、直角三角形公理两条平行线被第三条直线所截,同位角相等;简洁说成:两直线平行,同位角相等;(一)、直角三角形的性质定理两条平行线被第三条直线所截,内错角相等;1、直角三角形的两个锐角互余简洁说成:两直线平行,内错角相等;2、在直角三角形中,30 角所对的直角边等于斜边的一半;定理两条平行线被第三条直线所截,同旁内角互补;3
4、、在直角三角形中,假如一条直角边等于斜边的一半,那么这条直角边所对的锐角等于简洁说成:两直线平行,同旁内角互补;30假如两条直线都和第三条直线平行,那么这两条直线也相互平行;4、直角三角形斜边上的中线等于斜边的一半4、三角形内角和定理三角形三个内角的和等于180 ;5、勾股定理:直角三角形两直角边a,b 的平方和等于斜边c 的平方,即a2b2c2其它性质:5、三角形内角和定理的推论三角形的一个外角等于和它不相邻的两个内角的和;1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相像;名师归纳总结 三角形的一个外角大于任何一个和它不相邻的内角;2、常用关系式:由三角形面积公式可得:证
5、明(二)两直角边的积 =斜边与斜边上的高的积(等面积法)(二)、直角三角形的判定一、公理 (1)三边对应相等的两个三角形全等(可简写成“ 边边边” 或“SSS” ); 1、有一个角是直角的三角形是直角三角形;(2)两边及其夹角对应相等的两个三角形全等(可简写成“ 边角边” 或“SAS” );2、假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;(3)两角及其夹边对应相等的两个三角形全等(可简写成“ 角边角” 或“ASA ” );3、勾股定理的逆定理(4)全等三角形的对应边相等、对应角相等;假如三角形的三边长a,b,c 有关系a2b2c2,那么这个三角形是直角三角形;推论:两角及
6、其中一角的对边对应相等的两个三角形全等(可简写成 “ 角角边” 或“ AAS ” );二、等腰三角形(三)直角三角形全等的判定:1、等腰三角形的性质对于特别的直角三角形,判定它们全等时,仍有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“ 斜边、直角边” 或“HL ” )(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(三线合一);第 1 页,共 6 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载五、角的平分线及其性质与判定(5)定理 4:
7、一组对边平行且相等的四边形是平行四边形1、角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射 线叫做这个角的平分线;4、平行四边形的面积 S 平行四边形 =底边长 高 =ah 二、矩形2、角的平分线的性质定理:角平分线上的点到这个角的两边的距离相等;定理:三角形的三条角平分线相交于一点(三角形的内心),并且这一点到三条边的距离 1、矩形的定义相等;3、角的平分线的判定定理:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上;六、线段垂直平分线的性质与判定有一个角是直角的平行四边形叫做矩形;2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩
8、形的对角线相等且相互平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩 形四个顶点的距离相等) ;对称轴有两条,是对边中点连线所在的直线;3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理 1:有三个角是直角的四边形是矩形(3)定理 2:对角线相等的平行四边形是矩形 4、矩形的面积 S矩形 =长 宽 =ab 三、菱形1、线段的垂直平分线:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;定理:三角形三条边的垂直平分线相交于一点(三角形的外心),并且这一点到三个
9、顶点的距离相等;线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;七、反证法 八、互逆命题、互逆定理1、在两个命题中,假如一个命题的条件和结论分别是另一个命题的结论和条件,那么这 两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题;2、假如一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互 逆定理,其中一个定理称为另一个定理的逆定理;证明(三)一、平行四边形 1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线相互垂直平分,并且每一条对角线平
10、分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等) ;对称轴有两条,是对角线所在的直线;3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理 1:四边都相等的四边形是菱形 1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形;2、平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形相邻的角互补,对角相等(3)平行四边形的对角线相互平分;(3)定理 2:对角线相互垂直的平行四边形是菱形(4)平行四边形是中心对称图形,对称中心是对角线的交点;4、菱形的面积常用点:(1)如始终线过平行四边形两对角线的交点,
11、就这条直线被一组对边截下的线 S 菱形 =底边长 高 =两条对角线乘积的一半段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积;四、正方形(310 分)(2)推论:夹在两条平行线间的平行线段相等; 1、正方形的定义3、平行四边形的判定 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形;(1)定义:两组对边分别平行的四边形是平行四边形 2、正方形的性质(2)定理 1:两组对角分别相等的四边形是平行四边形(1)正方形四条边都相等,对边平行(3)定理 2:两组对边分别相等的四边形是平行四边形(2)正方形的四个角都是直角(4)定理 3:对角线相互平分的四边形是平行四边形(3)正方形的两
12、条对角线相等,并且相互垂直平分,每一条对角线平分一组对角名师归纳总结 - - - - - - -第 2 页,共 6 页精选学习资料 - - - - - - - - - 学习必备欢迎下载b2c2(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四解直角三角形学问点总结条,是对角线所在的直线和对边中点连线所在的直线;3、正方形的判定考点一、直角三角形的性质(35 分)判定一个四边形是正方形的主要依据是定义,途径有两种:1、直角三角形的两个锐角互余先证它是矩形,再证它是菱形;可表示如下:C=90A+B=90先证它是菱形,再证它是矩形;2、在直角三角形中,30 角所对的直角边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年初 几何 知识点 总结 非常
限制150内