第7章遗传算法报告优秀PPT.ppt
《第7章遗传算法报告优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第7章遗传算法报告优秀PPT.ppt(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第4章 基于遗传算法的随机优化搜寻4.1 4.1 基本概念基本概念4.2 4.2 基本遗传算法基本遗传算法4.3 4.3 遗传算法应用举例遗传算法应用举例4.4 4.4 遗传算法的特点与优势遗传算法的特点与优势 4.1 4.1 基本概念基本概念 1.1.个体与种群个体与种群 个体就是模拟生物个体而对问题中的对象个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼,一个个(一般就是问题的解)的一种称呼,一个个 体也就是搜寻空间中的一个点。体也就是搜寻空间中的一个点。种群种群(population)(population)就是模拟生物种群而由若就是模拟生物种群而由若 干个体组成的群
2、体干个体组成的群体,它一般是整个搜寻空间它一般是整个搜寻空间 的一个很小的子集。的一个很小的子集。2.2.适应度与适应度函数适应度与适应度函数 适应度适应度(fitness)(fitness)就是借鉴生物个体对环境的就是借鉴生物个体对环境的 适应程度适应程度,而对问题中的个体对象所设计的而对问题中的个体对象所设计的 表征其优劣的一种测度。表征其优劣的一种测度。适应度函数适应度函数(fitness function)(fitness function)就是问题中的就是问题中的 全体个体与其适应度之间的一个对应关系。全体个体与其适应度之间的一个对应关系。它一般是一个实值函数。该函数就是遗传算它一般
3、是一个实值函数。该函数就是遗传算 法中指导搜寻的评价函数。法中指导搜寻的评价函数。3.3.染色体与基因染色体与基因染色体(chromosome)就是问题中个体的某种字符串形式的编码表示。字符串中的字符也就称为基因(gene)。例如:个体 染色体 9 -1001 (2,5,6)-010 101 1104.4.遗传操作遗传操作亦称遗传算子(genetic operator),就是关于染色体的运算。遗传算法中有三种遗传操作:选择-复制(selection-reproduction)交叉(crossover,亦称交换、交配或杂交)变异(mutation,亦称突变)选选择择-复复制制通通常常做做法法是是
4、:对对于于一一个个规规模模为为N的的种种群群S,按按每每个个染染色色体体xiS的的选选择择概概率率P(xi)所所确确定定的的选选中中机机会会,分分N次从次从S中随机选定中随机选定N个染色体个染色体,并进行复制。并进行复制。这里的选择概率P(xi)的计算公式为交叉 就是互换两个染色体某些位上的基因。s1=01000101,s2=10011011可以看做是原染色体s1和s2的子代染色体。例如,设染色体 s1=01001011,s2=10010101,交换其后4位基因,即 变异变异 就是变更染色体某个就是变更染色体某个(些些)位上的位上的基因。基因。例如例如,设染色体设染色体 s=11001101将
5、其第三位上的将其第三位上的0变为变为1,即即 s=11001101 11101101=s。s也可以看做是原染色体也可以看做是原染色体s的子代染色的子代染色体。体。4.2 基本遗传算法 遗传算法基本流程框图生成初始种群计算适应度选择-复制交叉变异生成新一代种群终止?结束 算法中的一些限制参数:种群规模 最大换代数 交叉率(crossover rate)就是参与交叉运算的染色体个数占全体染色体总数的比例,记为Pc,取值范围一般为0.40.99。变异率(mutation rate)是指发生变异的基因位数所占全体染色体的基因总位数的比例,记为Pm,取值范围一般为0.00010.1。基本遗传算法步1 在
6、搜寻空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;步2 随机产生U中的N个个体s1,s2,sN,组成初始种群S=s1,s2,sN,置代数计数器t=1;步3 计算S中每个个体的适应度f();步4 若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。步5 按选择概率P(xi)所确定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;步6 按交叉率Pc所确定的参与交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;步7 按变异率Pm所确定的变
7、异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;步8 将群体S3作为新一代种群,即用S3代替S,t=t+1,转步3;4.3 遗传算法应用举例 例例4.1 利用遗传算法求解区间0,31上的二次函数y=x2的最大值。y=x2 31 XY 分析 原问题可转化为在区间0,31中搜寻能使y取最大值的点a的问题。那么,0,31 中的点x就是个体,函数值f(x)恰好就可以作为x的适应度,区间0,31就是一个(解)空间。这样,只要能给出个体x的适当染色体编码,该问题就可以用遗传算法来解决。解(1)设定种群规模,编码染色体,产生初始种群。将种群规模设定为4;用
8、5位二进制数编码染色体;取下列个体组成初始种群S1:s1=13(01101),s2=24(11000)s3=8(01000),s4=19(10011)(2)定义适应度函数,取适应度函数:f(x)=x2 (3)计算各代种群中的各个体的适应度,并对其染色体进行遗传操作,直到适应度最高的个体(即31(11111))出现为止。首先计算种群S1中各个体 s1=13(01101),s2=24(11000)s3=8(01000),s4=19(10011)的适应度f(si)。简洁求得 f(s1)=f(13)=132=169 f(s2)=f(24)=242=576 f(s3)=f(8)=82=64 f(s4)=
9、f(19)=192=361再计算种群S1中各个体的选择概率。选择概率的计算公式为 由此可求得 P(s1)=P(13)=0.14 P(s2)=P(24)=0.49 P(s3)=P(8)=0.06 P(s4)=P(19)=0.31 赌轮选择示意s40.31s20.49s10.14s30.06 赌轮选择法在算法中赌轮选择法可用下面的子过程来模拟:在0,1区间内产生一个匀整分布的随机数r。若rq1,则染色体x1被选中。若qk-1rqk(2kN),则染色体xk被选中。其中的qi称为染色体xi(i=1,2,n)的积累概率,其计算公式为 选择-复制 设从区间0,1中产生4个随机数如下:r1=0.450126
10、,r2=0.110347 r3=0.572496,r4=0.98503 染色体 适应度选择概率积累概率选中次数s1=01101 169 0.14 0.14 1s2=11000 576 0.49 0.63 2s3=01000 64 0.06 0.69 0s4=10011 361 0.31 1.00 1于是,经复制得群体:s1=11000(24),s2=01101(13)s3=11000(24),s4=10011(19)交叉 设交叉率pc=100%,即S1中的全体染色体都参与交叉运算。设s1与s2配对,s3与s4配对。分别交换后两位基因,得新染色体:s1=11001(25),s2=01100(12
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 遗传 算法 报告 优秀 PPT
限制150内