运筹学指派问题.ppt
《运筹学指派问题.ppt》由会员分享,可在线阅读,更多相关《运筹学指派问题.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、运筹学指派问题运筹学指派问题其中矩阵C称为是效率矩阵或系数矩阵。其解的形式可用0-1矩阵的形式来描述,即(xij)nn。标准的指派问题是一类特殊的整数规划问题,又是特殊的0-1规划问题和特殊的运输问题。1955年W.W.Kuhn利用匈牙利数学家D.Konig关于矩阵中独立零元素的定理,提出了解指派问题的一种算法,习惯上称之为匈牙利解法。2.匈牙利解法 匈牙利解法的关键是指派问题最优解的以下性质:若从指派若从指派问题的系数矩阵问题的系数矩阵C=(cij)的某行(或某列)各元素分别减去一个)的某行(或某列)各元素分别减去一个常数常数k,得到一个新的矩阵,得到一个新的矩阵C=(cij),则以,则以C
2、和和C为系数矩阵的两为系数矩阵的两个指派问题有相同的最优解。个指派问题有相同的最优解。(这种变化不影响约束方程组,而只是使目标函数值减少了常数k,所以,最优解并不改变。)对于指派问题,由于系数矩阵均非负,故若能在在系数矩阵中找到n个位于不同行和不同列的零元素(独立的0元素),则对应的指派方案总费用为零,从而一定是最优的。作变换,其不变性是最优解匈牙利法匈牙利法的步骤如下:步1:变换系数矩阵。对系数矩阵中的每行元素分别减去该行的最小元素;再对系数矩阵中的每列元素分别减去该列中的最小元素。若某行或某列已有0元素,就不必再减了(不能出现负元素)。步2:在变换后的系数矩阵中确定独立0元素(试指派)。若
3、独立0元素已有n个,则已得出最优解;若独立0元素的个数少于n个,转步3。确定独立0元素的方法:当n较小时,可用观察法、或试探法;当n较大时,可按下列顺序进行 从只有一个0元素的行(列)开始,给这个0元素加圈,记作,然后划去所在的列(行)的其它0元素,记作。给只有一个0元素的列(行)的0加圈,记作,然后划去所在行的0元素,记作。反复进行,直到系数矩阵中的所有0元素都被圈去或划去为止。如遇到行或列中0元素都不只一个(存在0元素的闭回路),可任选其中一个0元素加圈,同时划去同行和同列中的其它0元素。被划圈的0元素即是独立的0元素。步3:作最少数目的直线,覆盖所有0元素(目的是确定系数矩阵的下一个变换
4、),可按下述方法进行1)对没有的行打“”号;2)在已打“”号的行中,对 所在列打“”3)在已打“”号的列中,对所在的行打“”号;4)重复2)3),直到再也找不到可以打“”号的行或列为止;5)对没有打“”的行划一横线,对打“”的列划一纵线,这样就得到覆盖所有0元素的最少直线数。步4:继续变换系数矩阵,目的是增加独立0元素的个数。方法是在未被直线覆盖的元素中找出一个最小元素,然后在打“”行各元素中都减去这一元素,而在打“”列的各元素都加上这一最小元素,以保持原来0元素不变(为了消除负元素)。得到新的系数矩阵,返回步2。以例说明匈牙利法的应用。例1:求解效率矩阵为如下的指派问题的最优指派方案。解:第
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学 指派 问题
限制150内