分数域信号与信息处理及其应用 (31).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《分数域信号与信息处理及其应用 (31).pdf》由会员分享,可在线阅读,更多相关《分数域信号与信息处理及其应用 (31).pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、IEEE TRANSACTIONS ON SIGNAL PROCESSING,VOL.65,NO.18,SEPTEMBER 15,20174797A Sampling Theorem for Fractional WaveletTransform With Error EstimatesAbstractAsageneralizationoftheordinarywavelettransform,the fractional wavelet transform(FRWT)is a very promising toolfor signal analysis and processing.Many
2、 of its fundamental prop-erties are already known;however,little attention has been paidto its sampling theory.In this paper,we first introduce the conceptof multiresolution analysis associated with the FRWT,and thenpropose a sampling theorem for signals in FRWT-based multires-olution subspaces.The
3、necessary and sufficient condition for thesampling theorem is derived.Moreover,sampling errors due totruncation and aliasing are discussed.The validity of the theoreti-cal derivations is demonstrated via simulations.Index TermsFractional Fourier transform,fractional wavelettransform,multiresolution
4、analysis,sampling theorem.I.INTRODUCTIONTHE fractional Fourier transform(FRFT)1 is a general-ized form of the ordinary Fourier transform(FT)with anangle parameter and is identical to the FT when the angle is equal to/2.The FRFT can be interpreted as a projection inthe time-frequency plane onto a lin
5、e that makes an angle of with respect to the time axis 2,as shown in Fig.1.The FRFTof a signal or function f(t)L2(R)is defined as 2F(u)=Ff(t)(u)=?Rf(t)K(u,t)dt(1)whereK(u,t)=Aeju2+t22cot jut csc,?=m(t u),=2m(t+u),=(2m 1)(2)Manuscript received August 15,2016;revised January 31,2017 and April23,2017;a
6、ccepted May 25,2017.Date of publication June 12,2017;date ofcurrent version July 10,2017.The associate editor coordinating the review ofthis manuscript and approving it for publication was Dr.Eleftherios Kofidis.This work was supported in part by the National Natural Science Foundationof China under
7、 Grants 61501144 and 61671179,in part by the FundamentalResearch Funds for the Central Universities under Grant 01111305,and in partby the National Basic Research Program of China under Grant 2013CB329003.(Corresponding author:Xiaoping Liu.)J.Shi,X.Liu,and X.Sha are with the Communication Research C
8、en-ter,Harbin Institute of Technology,Harbin 150001,China(e-mail:;).Q.Zhang is with the Shenzhen Graduate School,Harbin Institute of Tech-nology,Shenzhen 518055,China(e-mail:).N.Zhang is with the Communication Research Center,Harbin Instituteof Technology,Harbin 150001,China,and also with the Shenzh
9、en Gradu-ate School,Harbin Institute of Technology,Shenzhen 518055,China(e-mail:).Color versions of one or more of the figures in this paper are available onlineat http:/ieeexplore.ieee.org.Digital Object Identifier 10.1109/TSP.2017.2715009Fig.1.The time-fractional-frequency plane.isthetransformkern
10、elwithA=?(1 j cot)/2 andm Z.TheinverseFRFTwithrespecttoangleistheFRFTatangle,i.e.,f(t)=FF(u)(t)=?RF(u)K(u,t)du(3)where the superscript denotes the complex conjugate.By ex-tending the frequency concept to the FRFT domain,the ar-gument u is termed the fractional frequency 8.From thisviewpoint,the FRFT
11、 might be taken as the fractional spec-trum 9.It has proven to be a useful tool in areas such asoptics,radar,communications,and signal processing 29,among others.However,the FRFT has one major drawbackdue to using global kernel,i.e.,it only provides such fractionalspectral content without indication
12、 about the time localizationof the fractional spectral components.Therefore,the analysisof non-stationary signals whose fractional spectral character-istics change with time requires joint signal representations inboth time and fractional-frequency domains,rather than just afractional-frequency doma
13、in representation.A common approach to obtain a joint signal representation inboth time and fractional-frequency domains is to cut the signalfirst into slices,followed by doing an FRFT analysis on theseslices.The resulting joint signal representation is referred to asthe short-time FRFT(STFRFT)10,11
14、.However,the short-coming of the STFRFT is that its time and fractional-domainresolutions cannot simultaneously be arbitrarily high.This isdue to the uncertainty principle 12,13 of the FRFT,whichstates that a signal cannot be simultaneously concentrated inboth time and fractional-frequency domains.A
15、s a generaliza-tion of the ordinary wavelet transform(WT),the notion of the1053-587X 2017 IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission.See http:/www.ieee.org/publications standards/publications/rights/index.html for more information.4798IEEE TRANSACTIONS O
16、N SIGNAL PROCESSING,VOL.65,NO.18,SEPTEMBER 15,2017fractional wavelet transform(FRWT)was first introduced byMendlovic and David 14 as a way to deal with optical sig-nals 1519,and the FRWT 14 was defined as a cascade ofthe FRFT and the WT.Unfortunately,this transform can not beregardedasakindofjointti
17、me-fractional-frequencyrepresenta-tionsincetheresnoexplicit2-Ddomain(asillustratedinFig.1)for it,and time information is lost in the transform.Recently,Prasad and Mahato 20 expressed the ordinary WT of a signalin terms of the FRFTs of the signal and mother wavelet,andthey also called the expression
18、the FRWT.Actually,the authors20 found an equivalent expression of the ordinary WT in theFRFTdomain.Later,Shietal.21proposedanewdefinitionofthe FRWT using the concept of fractional convolution7.TheFRWT with an angle of a function f(t)L2(R)is definedas 21Wf(a,b)=?Rf(t),a,b(t)dt,(4)and the transform ke
19、rnel is given by,a,b(t)=1a?t ba?ejt2b22cot(5)where a R+,b R.Note that when =/2,the FRWTreduces to the ordinary WT.It is well-known that the ordinary WT is based on rectan-gular tessellations of the time-frequency plane,as illustratedin Fig.2(a),where we consider the t plane as the time-frequency pla
20、ne.It was shown in 21 that the FRWT tilesthe time-frequency plane in a parallelogram fashion shown inFig.2(b),whichmakesitbeaunifiedtime-frequencytransform.The interpretation of the FRWT may be twofold.Consideringa chirped signal f(t)ejt22cot,the FRWT can be viewed as theordinaryWTofthechirpedsignal
21、,whichcontainsachirpfactorejb22cot.Fast computation of the FRWT using the fast WTalgorithms is thus possible.On the other hand,invoking the Par-seval theorem of the FRFT 3,(4)has an equivalent expressionin the FRFT domain,i.e.,Wf(a,b)=?R2aF(u)(aucsc)K(u,b)du(6)where(ucsc)denotes the FT(with its argu
22、ment scaled bycsc)of(t).Moreover,the so-called admissibility condition22 of the FRWT implies that(0)=0,i.e.,?R(t)dt=0.Consequently,the continuous fractional wavelet basis functionsdefined in(5)must oscillate and behave as bandpass filters inthe FRFT domain.Therefore,if one defines a set of fixed sca
23、les,the FRWT can be interpreted as a non-uniform filterbank in theFRFT domain.Thereisalsoadirectlinktothewell-knownchirplettransform(CT),defined as 23Cf(tc,fc,log,)=?Rf(t)ctc,fc,log,(t)dt(7)withctc,fc,log,(t)=1g?t tc?ej(ttc)2+j2fc(ttc)(8)Fig.2.Tiling of the time-frequency plane:(a)WT and(b)FRWT.wher
24、e g(t)is a window function,tcis the time center,0 isthe effective time spread,fcis the frequency center,and is thechirp rate.In the time-frequency plane,the CT employs atomswith oriented time-frequency supports.Therefore,as noted inFig.2(b),the CT can be regarded as a special case of the FRWT.Now,we
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分数域信号与信息处理及其应用 31 分数 信号 信息处理 及其 应用 31
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内