(6.4.1)--Chapter6-4Recommendationsystem2.pdf
《(6.4.1)--Chapter6-4Recommendationsystem2.pdf》由会员分享,可在线阅读,更多相关《(6.4.1)--Chapter6-4Recommendationsystem2.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Haiying CheInstitute of Data Science and Knowledge EngineeringSchool of Computer ScienceBeijing Institute of TechnologyRecommendation System-Part 22Recommendation AlgorithmsMain AlgorithmsNeighborhood-basedUser-based FilteringItem-based Filtering1 Collaborative Filtering2 Content Based Filtering3 Kn
2、owledge BasedModel-basedMatrix Factorizationlatent Dirichlet allocation(LDA)Structured FeatureUnstructured FeatureLatent Factor modelGraph model.3Lets watch a video“How Recommender Systems Work(NetflixAmazon)”4LFM(Latent factor model)Find some character the items may haveDecompose the rating matrix
3、into item-character rating&user-character ratingAbstract model:just suppose the number of character5SVD(Singular Value Decomposition)The linear algebra method used to decompose matrices Suppose the rating matrix is m:Compute the eigenvalue&eigenvector of&U matrix:the matrix of the eigenvectors of V
4、matrix:the matrix of the eigenvectors of matrix:the square root of eigenvalues of SVD is often denoted6Matrix Decomposition SVD requires dense matrix,that is the matrix dont have missing values.Evidently,user-item rating matrix has lots of missing values.MatrixDecompositionSVD7Matrix Decomposition =
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 6.4 Chapter6 Recommendationsystem2
限制150内