《数列公式汇总.docx》由会员分享,可在线阅读,更多相关《数列公式汇总.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版数学必修五第二章 数列 重难点解析第二章 课文目录21数列的概念与简单表示法 22等差数列 23等差数列的前n项与 24等比数列 25等比数列前n项与 【重点】1、数列及其有关概念,通项公式及其应用。2、根据数列的递推公式写出数列的前几项。3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。4、等差数列n项与公式的理解、推导及应用,熟练掌握等差数列的求与公式。5、等比数列的定义及通项公式,等比中项的理解与应用。6、等比数列的前n项与公式推导,进一步熟练掌握等比数列的通项公式与前n项与公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。2、理解递推
2、公式与通项公式的关系。3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。4、灵活应用等差数列前n项公式解决一些简单的有关问题。5、灵活应用求与公式解决问题,灵活应用定义式及通项公式解决相关问题。6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。一、数列的概念与简单表示法 数列的定义:按一定次序排列的一列数叫做数列.注意:数列的数是按一定次序排列的,因此,如果组成两个数列的数一样而排列次序不同,那么它们就是不同的数列;定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项或首项
3、,第2项,第n 项,.数列的一般形式:,或简记为,其中是数列的第n项 数列的通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:并不是所有数列都能写出其通项公式,如上述数列;一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,它的通项公式可以是,也可以是.数列通项公式的作用:求数列中任意一项;检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项5.数列与函数的关
4、系:数列可以看成以正整数集N*或它的有限子集1,2,3,n为定义域的函数,当自变量从小到大依次取值时对应的一列函数值。反过来,对于函数y=f(x),如果f(i)i=1、2、3、4有意义,那么我们可以得到一个数列f(1)、 f(2)、 f(3)、 f(4),f(n),6数列的分类:1根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6。是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6是无穷数列2根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列。递减数列:从第2项起,每一项都不大于它的前一项的数列。常数数列:各项相等的数列。摆动数
5、列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列7数列的表示方法1通项公式法如果数列的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。如数列 的通项公式为 ; 的通项公式为 ; 的通项公式为 ;2图象法启发学生仿照函数图象的画法画数列的图形具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点以前面提到的数列 为例,做出一个数列的图象,所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势3递推公式法如果数
6、列的第1项或前几项,且任一项与它的前一项或前n项间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式也是给出数列的一种方法。如下数字排列的一个数列:3,5,8,13,21,34,55,89递推公式为:4、列表法简记为 典型例题:例1:根据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 9, 17, 33,; (2) , , , , , ; (3) 0, 1, 0, 1, 0, 1,; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ;(5) 2, 6, 12, 20, 30, 42,. 解:(1) 2n1; (2) ; (3) ; (4)
7、 将数列变形为10, 21, 30, 41, 50, 61, 70, 81, , (5) 将数列变形为12, 23, 34, 45, 56,,例2:设数列满足写出这个数列的前五项。 解: 二、等差数列1等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差常用字母“d表示。 公差d一定是由后项减前项所得,而不能用前项减后项来求;对于数列,假设=d (与n无关的数或字母),n2,nN,那么此数列是等差数列,d 为公差。2等差数列的通项公式:【或】等差数列定义是由一数列相邻两项之间关系而得假设一等差数列的首项是,公差是d,
8、那么据其定义可得:即:即:即:由此归纳等差数列的通项公式可得:一数列为等差数列,那么只要知其首项与公差d,便可求得其通项。由上述关系还可得:即:那么:=即等差数列的第二通项公式 d=3有几种方法可以计算公差d d= d= d=4结论:性质在等差数列中,假设m+n=p+q,那么,即 m+n=p+q (m, n, p, q N ) 但通常 由 推不出m+n=p+q ,典型例题:例1:求等差数列8,5,2的第20项 -401是不是等差数列-5,-9,-13的项?如果是,是第几项?解: 例3:求等差数列3,7,11,的第4项与第10项.例5:100是不是等差数列2,9,16,的项?如果是,是第几项?如
9、果不是,说明理由.例6:20是不是等差数列0,3,7,的项?如果是,是第几项?如果不是,说明理由.例8:在等差数列中,假设+=9, =7, 求 , .三、等差数列的前n项与1等差数列的前项与公式1:证明: 由此得: 从而我们可以验证高斯十岁时计算上述问题的正确性2 等差数列的前项与公式2: 用上述公式要求必须具备三个条件: 但 代入公式1即得: 此公式要求必须三个条件: 有时比拟有用对等差数列的前项与公式2:可化成式子:,当d0,是一个常数项为零的二次式3 由的定义可知,当n=1时,=;当n2时,=-,即=.4 对等差数列前项与的最值问题有两种方法:(1) 利用:当0,d0,前n项与有最大值可
10、由0,且0,求得n的值当0,前n项与有最小值可由0,且0,求得n的值(2) 利用:由利用二次函数配方法求得最值时n的值典型例题:例2:等差数列10,6,2,2,前9项的与多少?解:例3:等差数列前10项的与为140,其中,项数为奇数的各项的与为125,求其第6项解 例6:等差数列an中,S3=21,S6=64,求数列|an|的前n项与Tn例7: 在等差数列an中,a6a9a12a1534,求前20项之与例8:等差数列an的公差是正数,且a3a7=12,a4a6=4,求它的前20项的与S20的值例9:等差数列an、bn的前n项与分别为Sn与Tn,假设例10: 解答以下各题:(1):等差数列an中
11、a23,a617,求a9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之与为1350,求这几个数;(3):等差数列an中,a4a6a15a1750,求S20;(4):等差数列an中,an=333n,求Sn的最大值四、等比数列1等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示q0,即:=qq01“从第二项起与“前一项之比为常数(q) 成等比数列=q,q02 隐含:任一项“0是数列成等比数列的必要非充分条件3 q= 1时,an为常数。2.等比数列的通项公式1
12、: 由等比数列的定义,有:3.等比数列的通项公式2: 4既是等差又是等比数列的数列:非零常数列5等比数列与指数函数的关系:等比数列的通项公式,它的图象是分布在曲线q0上的一些孤立的点。当,q 1时,等比数列是递增数列;当,等比数列是递增数列;当,时,等比数列是递减数列;当,q 1时,等比数列是递减数列;当时,等比数列是摆动数列;当时,等比数列是常数列。6等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项. 即G=a,b同号如果在a与b中间插入一个数G,使a,G,b成等比数列,那么,反之,假设G=ab,那么,即a,G,b成等比数列a,G,b成等比数列
13、G=abab07等比数列的性质:假设m+n=p+k,那么在等比数列中,m+n=p+q,有什么关系呢?由定义得: 那么8判断等比数列的方法:定义法,中项法,通项公式法9等比数列的增减性:当q1, 0或0q1, 1, 0,或0q0时, 是递减数列;当q=1时, 是常数列;当q0,那么lga1,lga2,lga3成等差注12典型例题:例1:求与: .解:等 差 数 列等 比 数 列定 义 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列这个常数叫公差一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列这个常数叫公比 递推关系 通项公式 求与公式 ()() () (,)主要性质假设p+q=s+r, p、q、s、rN*,那么.对任意c0,c1,为等比数列.假设、分别为两等差数列,那么为等差数列.假设为正项等差自然数列,那么为等差数列.为等差数列.假设p+q=s+r, p、q、s、rN*,那么.对任意c0,c1, 假设an恒大于0,那么为等差数列.假设、为两等比数列,那么为等比数列.假设为正项等差自然数列,那么为等比数列.为等比数列.第 12 页
限制150内