分式方程的概念及解法.doc
《分式方程的概念及解法.doc》由会员分享,可在线阅读,更多相关《分式方程的概念及解法.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 分式方程的概念,解法知识要点梳理要点一:分式方程的定义分母里含有未知数的方程叫分式方程。要点诠释:1分式方程的三个重要特征:是方程;含有分母;分母里含有未知量。2分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知 数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程与 都是分式方程,而关于的方程与都是整式方程。要点二:分式方程的解法1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母,即方程两边同乘最简公分母,将分式方程转化 为整式方程,然后利用整式方程的解法求解。2解分式方程的一般方法与步骤 (1)去分母,即在方程的两边都
2、乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。3. 增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就
3、会出现增根。规律方法指导1一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,那么整式方程的解是原分式方程的解,否那么,这个解不是原分式方程的解经典例题透析:类型一:分式方程的定义1、以下各式中,是分式方程的是 A B C D举一反三:【变式】方程中,x为未知量,a,b为数,且,那么这个方程是 A分式方程 B一元一次方程 C二元一次方程 D三元一次方程类型二:分式方程解的概念2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x0这样的分式方程可以是_. 举一反三:【变式】在 中,哪个是分式方程的解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分式 方程 概念 解法
限制150内