巧用空间向量解立体几何题.doc
《巧用空间向量解立体几何题.doc》由会员分享,可在线阅读,更多相关《巧用空间向量解立体几何题.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、巧用空间向量解立体几何中题 摘要:近几年高考,空间向量在立体几何中的应用占重要的地位。空间向量是数学中的重要知识之一,由于它具有几何形式和代数形式的“双重身份”,使它成为中学数学知识的一个交汇点。对于立体几何体中有关夹角、距离、垂直、平行的问题,可将其转化为空间向量间的夹角、模、垂直、平行的问题,利用空间向量的方法解决。利用空间向量,使复杂的逻辑推理证明变成简单的程序化算法,使问题简单化。关键词:空间向量;立体几何;应用;在立体几何中有比较难以解决的两大问题:角和距离的求解问题。空间中的各种角包括:异面直线所成的角、直线与平面所成的角以及二面角,以往学习空间角的问题,难点在于数形转换,“作、证
2、、算”的规范步骤,这是对点、直线、平面所组成的空间图形的位置关系要具有定性分析和定量的计算的能力。空间的距离包括:点到点的距离、点到直线的距离、点到平面的距离、异面直线的距离、直线到平行平面的距离、两个平行平面的距离。用常规的解法中难点在于数形转换,而且很容易造成视觉的误差,这对学生的空间想象能力有较高的要求。如果我们应用空间向量,就可将使得原本很繁琐的推理,变得思路清晰且规范,从而提高学生的空间想象能力和学习效率。本文就空间向量在角度与距离的计算,垂直、平行的证明等方面的应用进行探讨。一、 空间向量在立体几何中角度问题的应用1、 异面直线的夹角:例1(广东卷)如图所示,、分别是圆O、圆O的直
3、径,与两圆所在的平面均垂直,.是圆O的直径,,. (II)求直线与所成的角.解:以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,0),B(,0,0),D(0,8),E(0,0,8),F(0,0)所以,设异面直线BD与EF所成角为,则所以,直线BD与EF所成的角为。点评:对于那些求异面直线夹角运用传统方法求解难度较大的题目,用空间向量的方法进行处理,就能降低难度,整个操作过程,非常简捷。用空间向量的方法,更易于学生掌握。2、 直线与平面的夹角:DBCAS例2(全国理19题)四棱锥SABCD中,底面ABCD为平行四边形,侧面SBC底面ABC
4、D。已知ABC45,AB2,BC=2,SASB。()求直线SD与平面SAB所成角的大小;解:如图,以为坐标原点,为轴正向,建立直角坐标系,所以取中点,连结,取中点,连结,与平面内两条相交直线,垂直所以平面,与的夹角记为,与平面所成的角记为,则与互余,所以,直线与平面所成的角为。点评:本题应用空间向量的方法,使复杂的逻辑推理变成简单的程序化算法,使问题简单化。使原本很繁琐的推理,变得思路清晰且规范,从而提高学生的空间想象能力和学习效率。3、 二面角:例3(宁夏理19题)如图,在三棱锥中,侧面与侧面均为等边三角形,为中点 ()求二面角的余弦值证明:以为坐标原点,射线分别为轴、轴正半轴,建立如图的空
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 立体几何
限制150内