工程材料及机械制造基础复习工程材料.doc
《工程材料及机械制造基础复习工程材料.doc》由会员分享,可在线阅读,更多相关《工程材料及机械制造基础复习工程材料.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、工程材料及机械制造根底复习工程材料工程材料11 材料的力学性能121 金属的晶体构造(1)根本概念晶体与非晶体: 两者的主要区别是: a晶体中原子(或分子)按一定的几何规律作周期的重复排列; b晶体具有固定的熔点; c晶体具有各向异性。 晶格;为了便于说明晶体内部的原子排列规律,把每个原子看成一个点,点与点之间用直线连接起来而形成的空间格子。 晶胞:能完全反映晶格原子排列特征的最小几何单元。晶格常数;晶胞的棱边长度,晶格常数与棱面夹角表示晶胞的形状与大小。(2)常见金属晶格类型单晶体的各项异性:由于各晶面与各晶向上的原子排列密度不同,因而导致在同一晶体的不同晶面与晶向上的各种性能也不同各项异性
2、。多晶体晶粒大小对材料性能影响很大,在常温下,晶粒愈细,材料的强度高,塑性、韧性愈好。晶体的缺陷形式:点缺陷、线缺陷、面缺陷。晶体的缺陷对金属的许多性能有很大的影响,特别对金属的塑性变形、强化、固态相变等都有重要的影响。122 金属的结晶 (1)结晶的概念 物质从液态转变为固态的过程称为凝固。而结晶是指由液态转变为晶体的过程,即金属与合金从液态的无序状态转变为原子有规那么排列的晶体构造的过程。理解结晶的概念应着重掌握以下几点: 纯金属的结晶在恒温下进展,其结晶过程可用冷却曲线表示。 纯金属的结晶需要一定的过冷度,即过冷是金属结晶的必要条件。过冷度T是指理论结晶温度To与实际结晶温度Tn之差(T
3、=ToTn)。冷却速度越大,过冷度越大。 金属的结晶包括两个过程:晶核的形成与晶核的长大。 (2)晶粒大小及其控制 晶粒越细,那么金属的强度、硬度、塑性与韧性越好。控制晶粒大小的方法有:增加过冷度(或增加冷却速度,如用金属型代替砂型、降低浇注温度、慢速浇注等)、变质处理、附加振动(机械振动、超声波振动、电磁搅拌等)。 (3)金属的同素异晶转变 金属在固态下发生晶格类型改变的过程称为同索异晶转变。它与液态金属结晶相比具有以下特点: 遵循金属结晶的一般规律生核与长大; 具有较大的过冷倾向; 常伴随着体积的变化,因而在金属中引起较大的内应力,故易引起金属材料的变形。(4)实际金属的晶体构造13 金属
4、的塑性变形单晶体的塑性变形的根本形式:滑移与孪晶两种。多晶体的塑性变形包括晶粒内部的变形与晶粒之间的变形两局部。晶内变形仍以滑移与孪晶两种根本方式进展,晶间变形包括晶粒之间的微量相互位移与转动。多晶体塑性变形的特点是:变形的不均匀性,变形抗力比单晶体大,形成纤维组织与各向异性。滑移系数愈多,金属的塑性愈好,特别是其中的滑移方向的作用更大。塑性变形对金属组织与性能的影响变形金属在加热时的组织与性能的变化:回复、再结晶与晶粒长大。变形金属经过再结晶后其变形组织、性能完全消失,所以硬度、强度显著下降,塑性、韧性明显提高,内应力根本消除,金属恢复到变形前的性能。金属的冷热加工按低于或高于金属的再结晶温
5、度来分热加工对金属组织与性能的影响三方面:粗大的柱状晶与枝晶经热塑性变形被击碎并形成等轴细晶粒组织,改善了力学性能;铸态金属中的疏松、气孔、微裂纹等缺陷,经热塑性变形被压实或焊合,从而使组织致密,性能提高;使金属具有明显的各向异性,如某些纵向的性能明显大于横向流线。14 合金的构造与二元合金相图 (1)根本概念 组元:组成合金的最根本的物质。 相:合金中具有一样化学成分、一样晶体构造的均匀局部。 固溶强化:因形成固溶体而引起合金强度、硬度升高的现象。 合金相图:用来表示合金在不同成分、温度下的组织状态,以及它们之间相互关系的一种图形,亦称状态图或平衡图。 (2)合金的构造注:固态合金的相构造可
6、分为固溶体与金属化合物两大类。根据溶质原子在溶剂晶格中分布情况不同可将固溶体分为置换固溶体与间隙固溶体两种。15 铁碳合金相图1铁碳合金的根本组织3铁碳合金分类 (4)各相区组织 注假设要填各区域存在的相那么与上图不同,请注意区别。所谓Fe3C、Fe3C、Fe3C,它们的碳的质量分数、晶体构造与本身的性质都一样,其区别在于渗碳体的来源、形态及分布状况有所不同。 Fe3C Fe3C Fe3C 来源 液态 奥氏体 铁素体 形态 条片状 网状 断续的片状 分布 沿奥氏体晶界 沿铁素体晶界结晶过程及室温组织示意图 在亚共析钢中,随着碳的质量分数的增加,钢中的珠光体增多,铁索体减少,故强度、硬度提高,塑
7、性、韧性下降。但在过共析钢中,渗碳体沿原奥氏体晶界呈网状分布,削弱了各晶粒间的结合力,从而降低了钢的强度并增加了脆性。因此,碳的质量分数超过了09的钢,其硬度虽然继续增加,但强度却明显下降。特别是在白口铸铁中渗碳体作为基体存在时,其塑性与韧性大大下降,因此白口铸铁具有很高的脆性。 16钢的热处理 不管哪一种热处理工艺,都要经历加热、保温与冷却三个阶段,其中保温的作用在于使零件内外温度一致,并获得细而成分均匀的奥氏体晶粒。 热处理与其他加工方法(铸造、锻压、焊接、切削加工等)的区别是:它只改变金属材料的组织与性能,而不改变其形状与大小。 为了区别实际加热与冷却时的临界点,一般将加热时的临界点加标
8、符号“c,如Ac1、Ac2、Acm;冷却时的临界点加标符号“r,如A1r、Ar3、Arcm。 (1)钢的热处理根本原理 1)钢的奥氏体化 奥氏体的形成过程也是由形核与长大两个过来完成的。该过程可以归纳为以下三个阶段:奥氏体晶核的形成与长大、剩余渗碳体的溶解、奥氏体成分均匀化。 奥氏体的晶粒大小除了与加热温度与保温时间有关外,还与奥氏体中碳的质量分数及合金元素的质量分数有关。2)过冷奥氏体冷却时的组织转变 共析钢C曲线如上图。共析钢过冷奥氏体等温转变产物小结 在实际生产中常用相应的C曲线来粗略地定性分析连续冷却转变所得到的产物与性能,应重点掌握根据C曲线判断常用碳钢在炉冷、空冷、油冷、水冷等不同
9、冷却条件下的组织与性能。3)马氏体转变的主要特点转变速度极快,内应力较大;晶格发生严重畸变,塑性变形阻力增大;奥氏体中的碳的质量分数愈高,那么Ms与Mf愈低;马氏体转变不能完全进展到底,会有少量的剩余奥氏体被保存下来,奥氏体的碳的质量分数愈高,淬火后剩余奥氏体的量愈多。 (2)钢的热处理工艺 1)退火的目的 调整钢件的硬度,改善切削加工性能; 消除剩余应力,稳定工件尺寸,并防止其变形与开裂; 细化晶粒,改善组织,提高钢的力学性能与工艺性能; 为最终热处理(淬火、回火)做好组织上的准备。 2)正火目的与退火相似,其主要应用场合是: 改善低碳钢与低碳合金钢的切削加工性; 消除过共析钢中二次渗碳体,
10、为球化退火做好组织准备; 作为普通构造零件的最终热处理中碳钢。 3)常用淬火方法 4)渗氮 气体渗氮:加热温度一般为500560,其特点为: a工件不需再进展淬火处理便具有高的硬度与耐磨性,且在知500600时仍保持高的硬度(即红硬性)。 b显著提高了工件的疲劳极限,且使工件具有良好的耐蚀性能。 c处理温度低,工件变形小。 d氮化所需时间长。 渗氮处理主要用于耐磨性与精度要求很高的零件或要求耐热、耐蚀的耐磨件,如高精度机床丝杠、镗床镗杆、精细传动齿轮与轴、汽轮机阀门与阀杆、发动机气缸与捧气阀等。 离子氮化:大大缩短了渗氮时间,并且还能降低工件外表渗氮层的脆性,明显地提高韧性与疲劳极限。5)钢的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 材料 机械制造 基础 复习
限制150内