平面几何的几个重要的定理--梅涅劳斯定理.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《平面几何的几个重要的定理--梅涅劳斯定理.doc》由会员分享,可在线阅读,更多相关《平面几何的几个重要的定理--梅涅劳斯定理.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面几何的几个重要的定理一、梅涅劳斯定理:注:此定理常运用求证三角形相似的过程中的线段成比例的条件;注:此定理常用于证明三点共线的问题,且常需要多次使用 再相乘;CBA平面几何的几个重要定理 塞瓦定理塞瓦定理:CBAMQRACPBCBACBAKLNMCBA平面几何的几个重要定理托勒密定理托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和)即:EDCBA一、直接应用托勒密定理例1 如图2,P是正ABC外接圆的劣弧上任一点(不与B、C重合), 求证:PA=PBPC分析:此题证法甚多,一般是截长、补短,构造
2、全等三角形,均为繁冗若借助托勒密定理论证,则有PABC=PBACPCAB,AB=BC=ACPA=PB+PC二、完善图形 借助托勒密定理例2 证明“勾股定理”:在RtABC中,B=90,求证:AC2=AB2BC2证明:如图,作以RtABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形由托勒密定理,有ACBD=ABCDADBC 又ABCD是矩形,AB=CD,AD=BC,AC=BD 把代人,得AC2=AB2BC2例3 如图,在ABC中,A的平分 线交外接圆于D,连结BD,求证:ADBC=BD(ABAC)证明:连结CD,依托勒密定理,有ADBCABCDACBD1=2, BD=CD故 A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面几何 几个 重要 定理 梅涅劳斯
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内