二次函数的存在性问题相似三角形的存在性问题.doc
《二次函数的存在性问题相似三角形的存在性问题.doc》由会员分享,可在线阅读,更多相关《二次函数的存在性问题相似三角形的存在性问题.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数的存在性问题(相似三角形)1、已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;AABBOOxxyy图图(3)连接OA、AB,如图,在x轴下方的抛物线上是否存在点P,使得OBP与OAB相似?若存在,求出P点的坐标;若不存在,说明理由。2、设抛物线与x轴交于两个不同的点A(一1,0)、B(m,0),与y轴交于点C.且ACB=90 (1)求m的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A的直线交抛物线于另一点E若点P在
2、x轴上,以点P、B、D为顶点的三角形与AEB相似,求点P的坐标(3)在(2)的条件下,BDP的外接圆半径等于_解:(1)令x=0,得y=2 C(0,一2)ACB=90,COAB, AOC COB,OAOB=OC2;OB= m=43、已知抛物线经过点A(5,0)、B(6,-6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线与抛物线相交于点C(2,m),请求出OBC的面积S的值.(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E. 直线PF与直线DC及两坐标轴围成矩形OFED(如图
3、),是否存在点P,使得OCD与CPE相似?若存在,求出点P的坐标;若不存在,请说明理由. 解:(1)由题意得: 解得故抛物线的函数关系式为(2)在抛物线上, 点坐标为(2,6),、C在直线上 解得直线BC的解析式为设BC与x轴交于点G,则G的坐标为(4,0)(3)存在P,使得 设P, 故若要,则要或 即或解得或又在抛物线上,或解得或 故P点坐标为和4、如图,抛物线与轴的交点为直线与轴交于,与轴交于若两点在直线上,且,为线段的中点,为斜边上的高(1)的长度等于 ; , (2)是否存在实数,使得抛物线上有一点,满足以为顶点的三角形与相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,
4、同时探索所求得的抛物线上是否还有符合条件的点(简要说明理由);并进一步探索对符合条件的每一个点,直线与直线的交点是否总满足,写出探索过程解:(1);,(2)设存在实数,使抛物线上有一点,满足以为顶点的三角形与等腰直角相似以为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以为直角边的等腰直角三角形,另一类是以为斜边的等腰直角三角形若为等腰直角三角形的直角边,则由抛物线得:,的坐标为把代入抛物线解析式,得抛物线解析式为即若为等腰直角三角形的斜边,则,的坐标为把代入抛物线解析式,得抛物线解析式为,即当时,在抛物线上存在一点满足条件,如果此抛物线上还有满足条件的点,不妨设为点,那么只
5、有可能是以为斜边的等腰直角三角形,由此得,显然不在抛物线上,故抛物线上没有符合条件的其他的点当时,同理可得抛物线上没有符合条件的其他的点当的坐标为,对应的抛物线解析式为时,和都是等腰直角三角形,又,总满足当的坐标为,对应的抛物线解析式为时,同理可证得:,总满足5、如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B(1)求抛物线的解析式;(2)在抛物线上求点M,使MOB的面积是AOB面积的3倍;(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使OBN与OAB相似?若存在,求出N点的坐标;若不存在,说明理由解:(1)由题意可设抛物线的解析式为 抛物线过原点 抛物线的解析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 存在 问题 相似 三角形
限制150内