一元二次方程根的分布情况归纳完整版.doc
《一元二次方程根的分布情况归纳完整版.doc》由会员分享,可在线阅读,更多相关《一元二次方程根的分布情况归纳完整版.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程根的分布情况设方程的不等两根为且,相应的二次函数为,方程的根即为二次函数图象与轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)表二:(两根与的大小比较)分布情况两根都小于即两根都大于即一个根小于,一个大于即大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)表三:(根在区间上的分布)分布情况两根都在内两根有且仅有一根
2、在内(图象有两种情况,只画了一种)一根在内,另一根在内,大致图象()得出的结论或大致图象()得出的结论或综合结论(不讨论)根在区间上的分布还有一种情况:两根分别在区间外,即在区间两侧,(图形分别如下)需满足的条件是(1)时,; (2)时,对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在内有以下特殊情况: 若或,则此时不成立,但对于这种情况是知道了方程有一根为或,可以求出另外一根,然后可以根据另一根在区间内,从而可以求出参数的值。如方程在区间上有一根,因为,所以,另一根为,由得即为所求; 方程有且只有一根,且这个根在区间内,即,此时由可以求出参数的值,然后再将参数的值带入方程,求
3、出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程有且一根在区间内,求的取值范围。分析:由即得出;由即得出或,当时,根,即满足题意;当时,根,故不满足题意;综上分析,得出或根的分布练习题例1、已知二次方程有一正根和一负根,求实数的取值范围。解:由 即 ,从而得即为所求的范围。例2、已知方程有两个不等正实根,求实数的取值范围。解:由或即为所求的范围。例3、已知二次函数与轴有两个交点,一个大于1,一个小于1,求实数的取值范围。解:由 即 即为所求的范围。例4、已知二次方程只有一个正根且这个根小于1,求实数的取值范围。解:由题意有方程在区间上只有一个正根,则 即为所求范围。(注:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 分布 情况 归纳 完整版
限制150内