圆的相似综合题2.doc
《圆的相似综合题2.doc》由会员分享,可在线阅读,更多相关《圆的相似综合题2.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、相似与圆综合题目练习1、如图,已知AB是O的直径,P为O外一点,且OPBC,P=BAC(1)求证:PA为O的切线;(2)若OB=5,OP=,求AC的长2、如图,点C是以AB为直径的O上的一点,AD与过点C的切线互相垂直,垂足为点D(1)求证:AC平分BAD;(2)若CD=1,AC=,求O的半径长3、如图,O是ABC的外接圆,BC为O直径,作CAD=B,且点D在BC的延长线上,CEAD于点E(1)求证:AD是O的切线;(2)若O的半径为8,CE=2,求CD的长4、在RtABC中,ACB=90,D是AB边上的一点,以BD为直径作O交AC于点E,连结DE并延长,与BC的延长线交于点F且BD=BF(1
2、)求证:AC与O相切(2)若BC=6,AB=12,求O的面积5、如图,AB为O的直径,C为O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分DAB(1)求证:DC为O的切线;(2)若O的半径为3,AD=4,求AC的长6、如图,直线AB与O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求O的半径(2)点E在O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论(3)求弦EC的长7、如图,在平行四边形ABCD中,过点A作AEBC,垂足为E,连接DE,F为线段DE上一点,且AFE=B(1)求证:ADFDEC;(2)若AB=8,AD
3、=6,AF=4,求AE的长8、如图所示,在O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC(1)求证:AC2=ABAF;(2)若O的半径长为2cm,B=60,求图中阴影部分面积9、如图,正三角形ABC的边长为3+(1)如图,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形EFPN,且使正方形EFPN的面积最大(不要求写作法);(2)求(1)中作出的正方形EFPN的边长;(3)如图,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正
4、方形面积和的最大值和最小值,并说明理由10、类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G若=3,求的值(1)尝试探究在图1中,过点E作EHAB交BG于点H,则AB和EH的数量关系是_,CG和EH的数量关系是_,的值是_(2)类比延伸如图2,在原题的条件下,若=m(m0),则的值是_(用含有m的代数式表示),试写出解答过程(3)拓展迁移如图3,梯形ABCD中,DCAB,点E是BC的延长线上的一点,AE和BD相交于点F若=a,=b,(a0,b0),
5、则的值是_(用含a、b的代数式表示)初中数学组卷一解答题(共15小题)1、如图,已知AB是O的直径,P为O外一点,且OPBC,P=BAC(1)求证:PA为O的切线;(2)若OB=5,OP=,求AC的长(1)证明:AB是O的直径,ACB=90,BAC+B=90又OPBC,AOP=B,BAC+AOP=90P=BACP+AOP=90,由三角形内角和定理知PAO=90,即OAAP又OA是的O的半径,PA为O的切线;(2)解:由(1)知,PAO=90OB=5,OA=OB=5又OP=,在直角APO中,根据勾股定理知PA=,由(1)知,ACB=PAO=90BAC=P,ABCPOA,=,解得AC=8即AC的长
6、度为82、如图,点C是以AB为直径的O上的一点,AD与过点C的切线互相垂直,垂足为点D(1)求证:AC平分BAD;(2)若CD=1,AC=,求O的半径长(1)证明:连接OCOA=OC,ACO=CAOCD切O于C,OCCD,又ADCD,ADCO,DAC=ACO,DAC=CAO,即AC平分BAD;(2)解法一:如图2,过点O作OEAC于E在RtADC中,AD=3,OEAC,AE=AC=CAO=DAC,AEO=ADC=90,AEOADC,即,AO=,即O的半径为解法二:如图2,连接BC在RtADC中,AD=3AB是O直径,ACB=90,CAB=DAC,ACB=ADC=90,ABCACD,即,AB=,
7、=,即O的半径为3、如图,O是ABC的外接圆,BC为O直径,作CAD=B,且点D在BC的延长线上,CEAD于点E(1)求证:AD是O的切线;(2)若O的半径为8,CE=2,求CD的长(1)证明:连接OA,BC为O的直径,BAC=90,B+ACB=90,OA=OC,OAC=OCA,CAD=B,CAD+OAC=90,即OAD=90,OAAD,点A在圆上,AD是O的切线;(2)解:CEAD,CED=OAD=90,CEOA,CEDOAD,CE=2,设CD=x,则OD=x+8,即,解得x=,经检验x=是原分式方程的解,所以CD=4、在ABC中,CAB=90,ADBC于点D,点E为AB的中点,EC与AD交
8、于点G,点F在BC上(1)如图1,AC:AB=1:2,EFCB,求证:EF=CD(2)如图2,AC:AB=1:,EFCE,求EF:EG的值解答:(1)证明:如图1,在ABC中,CAB=90,ADBC于点D,CAD=B=90ACBAC:AB=1:2,AB=2AC,点E为AB的中点,AB=2BE,AC=BE在ACD与BEF中,ACDBEF,CD=EF,即EF=CD;(2)解:如图2,作EHAD于H,EQBC于Q,EHAD,EQBC,ADBC,四边形EQDH是矩形,QEH=90,FEQ=GEH=90QEG,又EQF=EHG=90,EFQEGH,EF:EG=EQ:EHAC:AB=1:,CAB=90,B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似 综合
限制150内