《统计学简答题答案.doc》由会员分享,可在线阅读,更多相关《统计学简答题答案.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、统计学根底贾俊平课后简答题第一章1什么是统计学?统计方法可以分为哪两大类?统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。统计方法可以分为描述统计和分类统计。2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度不同,分为分类数据、顺序数据和数值型数据;按照统计数据的收集方法,分为观测的数据和实验的数据;按照被描述的对象与时间的关系,分为截面数据和时间序列数据。 按计量尺度分时:分类数据中各类别之间是平等的并列关系,各类别之间的顺序是可以任意改变的;顺序数据的类别之间是可以比拟顺序的;数值型数据其结果表现为具体的数值。按收集方法分时:观测数据是在没有对事物进
2、展人为控制的条件下等到的;实验数据的在实验中控制实验对象而收集到的数据。按被描述的对象与时间关系分时:截面数据所描述的是现象在某一时刻的变化情况;时间序列数据所描述的是现象随时间而变化的情况。3举例说明总体、样本、参数、统计量、变量这几个概念。总体是包含所研究的全部个体数据的集合样本是从总体中抽取的一局部元素的集合参数是用来描述总体特征的概括性数字度量统计量是用来描述样本特征的概括性数字度量变量是说明现象某种特征的概念。对一千灯泡进展寿命测试,那么这千个灯泡就是总体,从中抽取一百个进展检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百
3、个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比方说灯泡的寿命。4什么是有限总体和无限总体?举例说明。根据总体所包含的单位数目是否可数可以分为有限总体和无限总体。总体的范围能够明确确定,而且元素的数目是有限可数的。比方,由假设干个企业构成的总体就是有限总体,一批待检验的灯泡也是有限总体。无限总体是指总体所包括的元素是无限的,不可数的。例如,在科学试验中,每一个试验数据可以看作是一个总体的一个元素,而试验可以无限地进展下去,因此由试验数据构成的总体就是一个无限总体。5变量可分为哪几类?分类变量:说明事物类别的一个名称。顺序变量:说明事物有序类别
4、的一个名称。数值型变量:说明事物数字特征的一个名称。离散型变量:只能取可数值的变量。连续型变量:可以在直线上或区间中去任何值的变量。6举例说明离散型变量和连续型变量。离散型变量:只能取有限个值,取值以整数位断开。如企业数、产量数量连续型变量:取值连续不断,不能一一列举,如年龄、温度第三章1数据的预处理包括哪些内容?数据审核完整性和准确性;适用性和实效性,数据筛选,数据排序等。2直方图与条形图有什么区别?条形图中每一矩形表示一个类别,其宽度没有意义,而直方图的宽度那么表示各组的组距。其次,由于分组数据具有连续性,直方图的各矩形通常是连续排列的,而条形图是分开排列的。最后,条形图主要用于展示定性数
5、据,而直方图那么主要用于展示定量数据。3饼图与环形图有什么不同?饼图是用圆形及圆内扇形的面积来表示数值大小的图形,它主要用于表示总体中各组成局部所占的比例,对于研究构造性问题十分有用。环形图与饼图类似,但它们之间也有区别。饼图只能显示一个样本或总体各局部所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞,每个样本或总体的数据系类为一个环。因此环形图可显示多个总体或样本各局部所占的相应比例,从而有利于我们进展比拟研究。4茎叶图与直方图相比有什么优点?直方图看数据的分布很方便,但原始数据看不至到了茎叶图那么不同,它不仅可以看出数据的分布,又能给出每一个原始数值,即保存了原始
6、数据的信息。制作茎叶图不需要对数据进展分组 ,特别是当数据量较少时,用茎叶图更容易观察数据的分布。 5使用图表应注意哪些问题?1显示数据。2让读者把注意力集中在图形的内容上,而不是在制作图形的程序上3防止歪曲!4强调数据之间的比拟。5效劳于一个明确的目的。6有对图形的统计描述和文字说明。第四章1一组数据的分布特征可以从哪几个方面进展测度?数据分布的特征主要从三个方面进展测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢E或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布偏斜程度和峰度。2简述四分位数的计算方法。四分位数是一组数据排序后处于25%和
7、75%位置上的值。根据未分组数据计算四分位数时,首先对数据进展排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数。3对于比率数据为什么采用几何平均?答:比率数据往往表现出连乘积为总比率的特征,不同于一般数据的和为总量的性质,由此需采用几何平均。在实际应用中,对于比率数据的平均采用几何平均要比算数平均更合理。从公式中也可看出,G就是平均增长率。4简述众数、中位数和平均数的特点和应用场合。答:众数、中位数和均值是分布集中趋势的三个主要测度,众数和中位数是从数据分布形状及位置角度来考虑的,而均值是对所有数据计算后得到的。众数容易计算,但不是总是存在,应用场合较少;中位数直观,不受极端数据的
8、影响,但数据信息利用不够充分;均值数据提取的信息最充分,但受极端数据的影响。众数是一组数据中出现次数最多的数,不受极端值的影响,缺点是具有不唯一性。众数只有在数据量较多时才有意义,数据量较少时不宜使用。主要适合作为分类数据的集中趋势测度值。中位数是一组数据中间位置上的代表值,不受极端值的影响。当数据的分布偏斜较大时,使用中位数也许不错。主要适合作为顺序数据的集中趋势测度值。平均数对数值型数据计算的,而且利用了全部数据信息,在实际应用中最广泛。当数据呈对称分布或近似对称分布时,三个代表值相等或相近,此时应选择平均数。但平均数易受极端值的影响,对于偏态分布的数据,平均数的代表性较差,此时应考虑中位
9、数或众数。5简述四分位差、方差或标准差的适用场合。对于顺序数据主要使用四分位差来测量其离散程度;对于数值型数据,主要使用方差或标准差来测量其离散程度。6标准分数有哪些用途?标准分数给出了一组数据中各数值的相对位置。在对多个具有不同量纲的变量进展处理时,常需要对各变量进展标准化处理。它还可以用来判断一组数据是否有离群数据7为什么要计算离散系数?答:在比拟两组数据的差异程度时,由于方差和标准差受变量值水平和计量单位的影响不能直接比拟,由此需计算离散系数作为比拟的指标。方差和标准差是反映数据分散程度的绝对值,一方面其数值大小受原变量值本身水平上下的影响,也就是与变量的平均数大小有关;另一方面,它们与
10、原变量的计量单位一样,采用不同计量单位的变量值,其离散程度的测度值也就不同。因此,为消除变量值水平上下和计量单位不同对离散程度测度值的影响,需要计算离散系数。第五章1、解释抽样推断的含义。如果我们掌握了所研究的总体的全部数据,那么只需要做一些简单的统计描述就可以得到有关总体的数量特征,比方,总体的均值、方差、比例等。但现实的情况那么比拟复杂,有些现象的范围比拟广,不可能对总体中的每个单位都进展测定。或者有些总体的单位数很多,不可能也没有必要进展一一测定。这就需要从总体中抽取一局部单位进展调查,进而利用样本本提供的信息来推断总体的数量特征。2、3.解释简单随机抽样、分层抽样、系统抽样和整群抽样的
11、含义。简单随机抽样:从含有N个元素得总体中,抽取n个元素作为样本,使得每一个容量为n得样本都有一样得时机概率被抽中,这样的抽样方式称为简单随机抽样,也称纯随机抽样。分层抽样:在抽样之前先将总体的元素划分为假设干层类,然后从各个层中抽取一定数量的元素组成一个样本,这样的抽样方式称为分层抽样,也称分类抽样。特点:1除了可以对总体进展估计外,还可以对各层的子总体进展估计。2分层抽样可以按自然区域或行政区域进展分层,使抽样的组织和实施都比拟方便3分层抽样的样本分布在各个层内,从而使样本在总体中的分布比拟均匀。4分层抽样可以提高估计的精度。系统抽样:先将总体各元素按某种顺序排列,并按某种规那么确定一个随
12、机起点,然后,每隔一定的间隔抽取一个元素,直至抽取n个元素形成一个样本。这样的抽样方式称为系统抽样。也称等距抽样或机械抽样。特点:1简便易行。2系统抽样的样本在总体中的分布一般也比拟均匀,由此估计的误差通常要小于简单随机抽样。整群抽样:先将总体划分成假设干群,然后以群作为抽样单位从中抽取局部群,再对抽中的各个群中所包含的所有元素进展观察,这样的抽样方式称为整群抽样。特点:不需要有总体元素的具体名单而只要有群的名单就可以进展抽样而群的名单比拟容易得到。此外,整群抽样时群内各元素比拟集中对样本进展调查比拟方便,节约费用。当群内的各元素存在差异时,整群抽样可以提供较好的结果,理想的情况是每一群都是整
13、个总体的一个缩影。在这种情况下,抽取很少的群就可以提供有关总体特征的信息。如果实际情况不是这样,整群抽样的误差会很大,效果也就很差。4什么是重复抽样和不重复抽样?从总体中抽取一个元素后,把这个元素放回到总体中再抽取第二个元素,直至抽取n个元素为止。这样的抽样方法称为重复抽样。一个元素被抽中后不再放回总体,然后再从所剩下的元素中抽取第二个元素,直到抽取n个元素为止,这样的抽样方法称为不重复抽样。5什么是抽样分布?重复选取容量为n的样本时,由每一个样本算出的统计量数值的相对频数分布或概率分布称为样本统计量的抽样分布6样本统计量的分布与总体分布的关系是什么?答:样本统计量包括样本均值、样本比率、样本
14、方差。1样本均值总体分布的关系:无论是重复还是不重复抽样,样本均值的数学期望始终等于总体均值;在重复抽样条件下,样本均值的方差为总体方差的1/n;在不重复抽样条件下,样本均值的方差为1/n2样本比率与总体分布的关系:样本比率p的数学期望等于总体比率;在重复条件下;在不重复条件下,用修正系数加以修正 3样本方差与总体分布的关系:对于来自正态总体的简单随机样本,那么比值的抽样分布服从自由度为n-1的x分布。7样本均值抽样分布的两个主要特征值是什么?它们与总体参数有什么关系?答:样本均值的期望值和样本均值的方差是两个主要特征。1样本均值的数学期望,它等于总体均值。2样本均值的方差在重复抽样条件下,样
15、本均值的方差为总体方差的1/n,在不重复抽样条件下,样本均值的方差需要用修正系数去修正8、Z/2的含义是什么?答:估计误差。第六章1理解原假设与备择假设的含义。原假设通常是研究者想收集证据予以反对的假设;而备择假设通常是研究者想收集证据予以支持的假设。2什么是检验统计量?什么是标准化检验统计量?根据样本观测结果计算得到的,并据以对原假设和备择假设作出决策的某个样本统计量,称为检验统计量。3第1类错误和第类错误分别是指什么?它们发生的概率大小之间存在怎样的关系?答:第I类错误指当原假设为真时拒绝原假设,所犯的错误,又称弃真错误,其概率为。第II类错误指当原假设为假时没有拒绝原假设所犯的错误,又称
16、取伪错误,其概率为。在样本量不变的情况下,要减小就会使增大,而要增大 就会使减小。4什么是显著性水平?它对于假设检验决策的意义是什么?答:假设检验中犯第一类错误的概率被称为显著性水平。显著性水平通常是人们事先给出的一个值,用于检验结果的可靠性度量,但确定了显著性水平等于控制了犯第一错误的概率,但犯第二类错误的概率却是不确定的,因此作出“拒绝原假设的结论,其可靠性是确定的,但作出“不拒绝原假设的结论,其可靠性是难以控制的。5什么是P值?利用P值决策的准那么是什么?答:p值是在原假设为真的条件下,检验统计量的观察值大于或等于其计算值的概率。准那么是:如果P值,拒绝H0原假设,如果P值,不拒绝H06
17、比拟单侧检验和双侧检验的区别。7、分别列出大样本情形下总体均值左侧检验、右侧检验及双侧检验的拒绝域。课本上有表格9、分别列出小样本情形下总体均值左侧检验、右侧检验及双侧检验的拒绝域。课本上有表格8、小样本情形下的总体均值检验应该构造什么检验统计量?应用前提是什么?在小样本情形下,检验统计量的选择与总体是否服从正态分布、总体方差是否有密切联系。其应用前提是总体服从正态分布;当总体方差时,选择Z统计量进展检验;当总体方差未知时,选择t统计量进展检验。10、总结假设检验的一般步骤。陈述原假设H0和备择假设H1;从所研究的总体中抽了一个随机样本;确定一个适当的检验统计量,并利用样本数据算出来具体数值;
18、确定一个适当的显著性水平a,并计算出其临界值,指定拒绝域;将统计量的值与临界值进展比拟,并做出决策:假设统计量的值落在拒绝域内,拒绝原假设H0,否那么不拒绝原假设H0。第七章1、解释相关关系的含义,说明相关关系的特点。答:变量间存在的不确定的数量关系,称为相关关系。特点是:一个变量的取值不能由另一个变量唯一确定,当变量x取某个值时,变量y的取值可能有几个。2、简述相关系数的取值及其意义。相关系数是对变量之间关系密切程度的度量。对两个变量之间线性相关关系的度量称为简单相关系数。它的取值范围在-1与1之间。假设0r=1,说明x与y之间存在正线性相关;假设-1=r0,说明x与y之间存在负线性相关;如
19、r=+1,说明x与y之间存在完全正线性相关;如r=-1,说明x与y之间存在完全负线性相关;假设r=0,说明x与y之间存在不存在线性相关。3、简述相关系数显著性检验的步骤。1提出假设:H0:p=0;H1:P不等于0 2使用t检验的方法,根据公式计算检验的统计量得出tt(n-2) 3 根据置信度a,查表,确定承受区域和拒绝区域 4检验t在哪个区域:假设t在拒绝域,那么拒绝H0;假设t在承受域,那么不拒绝H0 5如果求出两变量之间的线性相关系数,并且证明了两者有显著相关性,那么4、解释回归模型、回归方程、估计的回归方程的含义。答:回归模型:描述因变量如何依赖于自变量和误差项的方程。回归方程:回归方程
20、是对变量之间统计关系进展定量描述的一种数学表达式。指具有相关的随机变量和固定变量之间关系的方程。主要有回归直线方程。估计的回归方程:利用最小二乘法,根据样本数据求出的回归方程的估计。5、简述参数最小二乘估计的根本原理。未知量的最可能值是使各项实际观测值和计算值之间差的平方乘以其准确度的数值以后的和为最小6解释总平方和、回归平方和、残差平方和和的含义,并说明它们之间的关系。142页7简述判定系数的含义和作用。答:判定系数指回归平方和占总平方和的比例。作用:测度回归直线对观测数据的拟合程度,反映了在因变量y的总变差中由x与y之间的线性关系所解释的比例。8.在回归分析中,F检验和t检验各有什么作用?
21、F检验线性关系检验是检验自变量x和因变量y之间的线性关系是否显著,或者说,它们之间能否用一个线性模型y=1+2x+来表示。 t检验回归系数检验是要检验自变量对因变量的影响是否显著。验的具体步骤。146147页10.什么是置信区间和预测区间估计?二者有什么区别?第八章1、简述时间序列的各构成要素。时间序列的构成要素分为4种,即趋势T、季节性或季节变动S、周期性或循环滚动C、随机性或不规那么波动I。 趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势。 季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动。 周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势
22、的一种波浪形或振荡变动。 时间序列除去趋势、周期性和季节性之后的偶然性波动,称为随机性,也称不规那么波动。2、利用增长率分析时间序列时应注意哪些问题?首先,当时间序列中的观察值出现0时,不宜计算增长率比定某企业连续五年的利润额分别为5、2、0、3、2万元,对这一序列计算增率要么不符合数学公理,要么无法解释其实际意义。在这种情况下,适宜用绝对数进展分析。其次,在有些情况下,不能单纯就增长率论增长率,要注意增长率与绝平水平的结合分析。3、简述平稳序列和非平稳序列的含义。答:平稳序列是根本不存在趋势的序列。这类序列中的各观察值根本上在某个固定的水平 上波动,虽然在不同时间段波动的程度不同,但并不存在
23、某种规律,其波动可以看成是随机的。非平稳序列是包含趋势、季节性或周期性的序列,它可能只含有其中的一种成分,也可能是几种成分的组合。因此,非平稳序列又可以分为有趋势的序列,有趋势和季节性的序列,几种成分混合而成的复合型序列。4、简述指数平滑法的根本含义。对过去的观察值加权平均进展预测测,使得第t期的指数平滑值等于第t期的实际观察值与第t期指数平滑值的加权平均值,这样的一种预测方法称为指数平滑法。5、简述分解预测的根本步骤。第步:确定并别离季节成分。计算季节指数,以确定时间序列中的季节成分。然后将季节成分从时间序列中别离出去,即用每一个时间序列观测值除以相应的季节指数,以消除季节成分。第2步:建立
24、预测模型并进展预测。对消除季节成分的时间序列建立线性预测模型,并根据这一模型进展预测。第3步:计算出最后的预测值。用预测值乘以相应的季节指数,得到最终预测值。第九章1.说明指数的含义。答:指数最早起源于测量物价的变动。广义上,是指任何两个数值比照形成的相对数;狭义上,是指用于测定多个工程在不同场合下综合变动的一种特殊相对数。实际应用中使用的主要是狭义的指数。2加权综合指数和加权平均指数有何区别与联系。加权综合指数:通过加权来测定一组工程的综合变动,有加权数量指数和加权质量指数。使用条件:必须掌握全面数据数量指数,测定一组工程的数量变动,如产品产量指数,商品销售量指数等(质量指数,测定一组工程的
25、质量变动,如价格指数、产品本钱指数等)拉式公式:将权数的各变量值固定在基期。帕式公式:把作为权数的变量值固定在报告期。加权平均指数:以某一时期的总量为权数对个体指数加权平均。使用条件:可以是全面数据、不完全数据。因权数所属时期的不同,有不同的计算形式。有:算术平均形式、调和平均形式。3说明消费者价格指数、生产者价格指数、股票价格指数的含义。答:零售价格指数:反映城乡商品零售价格变动趋势的一种经济指数。消费者价格指数:反映一定时期内消费者所购置的生活消费品价格和效劳工程价格的变动趋势和程度的一种相对数。生产者价格指数:测量在初级市场上出售的货物(即在非零售市场上首次购置某种商品时)的价格变动的一种价格指数。股票价格指数:反映某一股票市场上多种股票价格变动趋势的一种相对数,简称股价指数。其单位一般用“点(point)表示,即将基期指数作为100,每上升或下降一个单位称为“1点。4消费价格指数有哪些作用?答:除了能反映城乡居民所购置的生活消费品价格和效劳工程价格的变动趋势和程度外,还有以下作用:1用于反映通货膨胀状况 2用于反映货币购置力变动3用于反映对职工实际工资的影响4用于缩减经济序列
限制150内