全国二卷立体几何真题及模拟题(理科).docx
《全国二卷立体几何真题及模拟题(理科).docx》由会员分享,可在线阅读,更多相关《全国二卷立体几何真题及模拟题(理科).docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、立体几何(理科)立体几何解题中常用的判定定理及性质定理1.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行(线线平行线面平行)若aa,ba,ab,则aa2.直线与平面平行的性质定理:如果一条直线和一个平面平行,过这条直线的任一平面与此平面的交线与该直线平行(线面平行线线平行)若aa,a,ab,则ab3.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,则该直线与此平面垂直若m,n,mnO,lm,ln,则l4.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行若a,b,则ab5.平面与平面平行的判定定理:如果一个平面内有
2、两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行)若aa,ba,abA,ab,bb,则ab6.平面与平面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行若ab,aa,bb,则ab7.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直若la,lb,则ab8.两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面若ab,abl,aa,al,则ab空间角的计算(1)两条异面直线所成角的求法设直线a,b的方向向量为a,b,其夹角为,则cos |cos |(其中为异面直线a,b所成的
3、角)(2)直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面的法向量为n,直线l与平面所成的角为,两向量e与n的夹角为,则有sin |cos |.(3)二面角的求法利用向量求二面角的大小,可以不作出平面角,如图所示,m,n即为所求二面角的平面角对于易于建立空间直角坐标系的几何体,求二面角的大小时,可以利用这两个平面的法向量的夹角来求如图所示,二面角-l-,平面的法向量为n1,平面的法向量为n2, n1,n2,则二面有-l-的大小为或.空间距离的计算直线到平面的距离,两平行平面的距离均可转化为点到平面的距离点P到平面的距离,d (其中n为的法向量,M为内任一点)空间角的范围(1)异面直
4、线所成的角():0;(2)直线与平面所成的角():0;(3)二面角():0.历年高考真题及解析(2013课标全国,理18)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的正弦值解:(1)连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1DF.因为平面A1CD,BC1 平面A1CD,所以BC1平面A1CD.(2)由ACCB得,ACBC.以C为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA2,则D(1,1,0),E(0,2,1),A1(2,0,2),(1,1,0),(0,2,1),(2,0,2)设n(x1,y1,z1)是平面
5、A1CD的法向量,则即可取n(1,1,1)同理,设m是平面A1CE的法向量,则可取m(2,1,2)从而cosn,m,故sinn,m.即二面角DA1CE的正弦值为.(2014课标全国,理18)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点.()证明:PB平面AEC;()设二面角D-AE-C为60,AP=1,AD=,求三棱锥E-ACD的体积.zxyABCDEGP解:()设AC的中点为G, 连接EG.在三角形PBD中,中位线EG/PB,且EG在平面AEC上,所以PB/平面AEC.()设CD=m, 分别以,AB, AD,AP为X,Y,Z轴建立坐标系,则(2015课标全
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 立体几何 模拟 理科
限制150内