初一数学资料培优汇总精华整理版.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《初一数学资料培优汇总精华整理版.doc》由会员分享,可在线阅读,更多相关《初一数学资料培优汇总精华整理版.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一讲 数系扩张-有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。2、有理数的两种分类:3、有理数的本质定义,能表成(互质)。4、性质: 顺序性(可比较大小); 四则运算的封闭性(0不作除数); 稠密性:任意两个有理数间都存在无数个有理数。5、绝对值的意义与性质: 非负性 非负数的性质: i)非负数的和仍为非负数。 ii)几个非负数的和为0,则他们都为0。二、【典型例题解析】: 1、若的值等于多少? 2 如果是大于1的有理数,那么一定小于它的( ) A.相反数 B.倒数 C.绝对值 D.平方 3、已知两数、互为相反数,、互为倒数,的绝对值是2,求的值。4、如果在数轴上
2、表示、两上实数点的位置,如下图所示,那么化简的结果等于( ) A. B. C.0 D.5、已知,求的值是( )A.2 B.3 C.9 D.6 6、 有3个有理数a,b,c,两两不等,那么中有几个负数? 7、 设三个互不相等的有理数,既可表示为1,的形式式,又可表示为0,的形式,求。8、 三个有理数的积为负数,和为正数,且则的值是多少?9、若为整数,且,试求的值。三、课堂备用练习题。1、计算:1+2-3-4+5+6-7-8+2019+2019 2、计算:12+23+34+n(n+1)3、计算:4、已知为非负整数,且满足,求的所有可能值。5、若三个有理数满足,求的值。5、(距离问题)观察下列每对数
3、在数轴上的对应点间的距离 4与,3与5,与,与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:_ .(2)若数轴上的点A表示的数为x,点B表示的数为1,则A与B两点间的距离可以表示为 _。6、结合数轴求得的最小值为_,取得最小值时x的取值范围为_。第二讲 数系扩张-有理数(二)一、【能力训练点】:1、绝对值的几何意义 表示数对应的点到原点的距离。 表示数、对应的两点间的距离。2、利用绝对值的代数、几何意义化简绝对值。二、【典型例题解析】: 1、 (1)若,化简(2)若,化简2、设,且,试化简3、是有理数,下列各式对吗?若不对,应附加什么条件?(1) (2)(
4、3) (4)若则(5)若,则 (6)若,则4、若,求的取值范围。5、不相等的有理数在数轴上的对应点分别为A、B、C,如果,那么B点在A、C的什么位置?6、设,求的最小值。7、是一个五位数,求的最大值。8、设都是有理数,令,试比较M、N的大小。 三、【课堂备用练习题】:1、已知求的最小值。2、若与互为相反数,求的值。3、如果,求的值。4、是什么样的有理数时,下列等式成立?(1) (2)5、化简下式: 第三讲 数系扩张-有理数(三)一、【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。(1)加法法则:同号相加取同号,并把绝对值相加;异号相加取绝对值较大数的符号,
5、并用较大绝对值减较小绝对值;一个数同零相加得原数。(2)减法法则:减去一个数等于加上这个数的相反数。(3)乘法法则:几个有理数相乘,奇负得负,偶负得正,并把绝对值相乘。(4)除法法则:除以一个数,等于乘以这个数的倒数。3、准确运用各种法则及运算顺序解题,养成良好思维习惯及解题习惯。二、【典型例题解析】:1、计算:2、计算:(1)、(2)、(-18.75)+(+6.25)+(-3.25)+18.25(3)、(-4)+3、计算: 4、 化简:计算:(1)(2)(3)(4)(5)-4.035127.53512-36()5、计算: (1)(2)(3)6、计算:7、计算: 第四讲 数系扩张-有理数(四)
6、一、【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。3、巧算的一般性技巧: 凑整(凑0); 巧用分配律 去、添括号法则; 裂项法4、综合运用有理数的知识解有关问题。二、【典型例题解析】:1、计算:2、 3、计算:4、化简:并求当时的值。5、计算:6、比较与2的大小。7、计算:8、已知、是有理数,且,含,请将按从小到大的顺序排列。三、【备用练习题】:1、计算(1) (2)2、计算:3、计算:4、如果,求代数式的值。5、若、互为相反数,、互为倒数,的绝对值为2,求的值。第五讲代数式(一)一、【能力训练点】:(1)列代数式; (2)代数式的意义; (3)代数式的
7、求值(整体代入法)二、【典型例题解析】:1、用代数式表示:(1)比的和的平方小的数。(2)比的积的2倍大5的数。(3)甲乙两数平方的和(差)。(4)甲数与乙数的差的平方。(5)甲、乙两数和的平方与甲乙两数平方和的商。(6)甲、乙两数和的2倍与甲乙两数积的一半的差。(7)比的平方的2倍小1的数。(8)任意一个偶数(奇数)(9)能被5整除的数。(10)任意一个三位数。2、代数式的求值:(1)已知,求代数式的值。(2)已知的值是7,求代数式的值。(3)已知;,求的值(4)已知,求的值。(5)已知:当时,代数式的值为2019,求当时,代数式的值。(6)已知等式对一切都成立,求A、B的值。(7)已知,求
8、的值。(8)当多项式时,求多项式的值。3、找规律:.(1); (2) (3) (4)第N个式子呢? .已知 ; ; ; 若(、为正整数),求. 猜想:三、【备用练习题】:1、若个人完成一项工程需要天,则个人完成这项工程需要多少天?2、已知代数式的值为8,求代数式的值。3、某同学到集贸市场买苹果,买每千克3元的苹果用去所带钱数的一半,而余下的钱都买了每千克2元的苹果,则该同学所买的苹果的平均价格是每千克多少元?4、已知求当时, 第六讲 代数式(二)一、【能力训练点】:(1)同类项的合并法则;(2)代数式的整体代入求值。二、【典型例题解析】:1、 已知多项式经合并后,不含有的项,求的值。2、当达到
9、最大值时,求的值。3、已知多项式与多项式N的2倍之和是,求N?4、若互异,且,求的值。5、已知,求的值。6、已知,求的值。7、已知均为正整数,且,求的值。8、求证等于两个连续自然数的积。9、已知,求的值。10、一堆苹果,若干个人分,每人分4个,剩下9个,若每人分6个,最后一个人分到的少于3个,问多少人分苹果?三、【备用练习题】:1、已知,比较M、N的大小。, 。2、已知,求的值。3、已知,求K的值。4、,比较的大小。5、已知,求的值。6、若多项式的值与x无关,求的值.7、x=-2时,代数式的值为8,求当x=2时,代数式的值。8、当代数式的值为7时,求代数式的值.9、已知,求的值.10、定义一种
10、对正整数n的“F”运算:当n为奇数时,结果为3n5;当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行例如,取n26,则:26134411第一次F第二次F第三次F 若n449,则第449次“F运算”的结果是_ 第七讲 发现规律一、【问题引入与归纳】我国著名数学家华罗庚先生曾经说过:“先从少数的事例中摸索出规律来,再从理论上来证明这一规律的一般性,这是人们认识客观法则的方法之一”。这种以退为进,寻找规律的方法,对我们解某些数学问题有重要指导作用,下面举例说明。能力训练点:观察、分析、猜想、归纳、抽象、验证的思维能力。二、【典型例题解析】1、 观察算式:按规律填空:1+3+5+99
11、= ?,1+3+5+7+ ?2、如图是某同学在沙滩上用石子摆成的小房子。观察图形的变化规律,写出第个小房子用了多少块石子? 第二题 第三题3、 用黑、白两种颜色的正六边形地面砖(如图所示)的规律,拼成若干个图案:(1)第3个图案中有白色地面砖多少块?(2)第个图案中有白色地面砖多少块?4、 观察下列一组图形,如图,根据其变化规律,可得第10个图形中三角形的个数为多少?第个图形中三角形的个数为多少? 第四题 第五题 5、 观察右图,回答下列问题:(1)图中的点被线段隔开分成四层,则第一层有1个点,第二层有3个点,第三层有多少个点,第四层有多少个点?(2)如果要你继续画下去,那第五层应该画多少个点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初一 数学 资料 汇总 精华 整理
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内