圆锥曲线之定点定值问题教师.doc
《圆锥曲线之定点定值问题教师.doc》由会员分享,可在线阅读,更多相关《圆锥曲线之定点定值问题教师.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 圆锥曲线 之 定点定值 问题一、定点问题例已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切求椭圆C的方程;设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;在的条件下,证明直线与轴相交于定点【练习1】 在直角坐标系中,点到点,的距离之和是,点 的轨迹是与轴的负半轴交于点,不过点的直线与轨迹交于不同的两点和求轨迹的方程;当时,求与的关系,并证明直线过定点【练习2】在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m0,。(1)设动点P满足,求点P的轨迹;(2)设,
2、求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。【练习3】已知椭圆C中心在原点,焦点在轴上,焦距为,短轴长为()求椭圆C的标准方程;()若直线:与椭圆交于不同的两点(不是椭圆的左、右顶点),且以为直径的圆经过椭圆的右顶点求证:直线过定点,并求出定点的坐标【练习4】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切()求椭圆的方程;()设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;()在()的条件下,过点的直线与椭圆交于,两点,求的取值范围二、定值问题例1已知椭圆的中心在原点,焦点在轴的非负半轴上,点到短轴端点的
3、距离是4,椭圆上的点到焦点距离的最大值是6.()求椭圆的标准方程和离心率;()若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由.例2:已知抛物线C的顶点在坐标原点,焦点在x轴上,P(2,0)为定点()若点P为抛物线的焦点,求抛物线C的方程;()若动圆M过点P,且圆心M在抛物线C上运动,点A、B是圆M与轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由【练习1】已知是椭圆C的两个焦点,、为过的直线与椭圆的交点,且的周长为()求椭圆C的方程;()判断是否为定值,若是求出这个值
4、,若不是说明理由.【练习3】、是经过椭圆 右焦点的任一弦,若过椭圆中心的弦,求证:是定值【练习4】如图,过抛物线上一定点P()(),作两条直线分别交抛物线于A(),B()当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.【练习5】 已知双曲线的离心率为,右准线方程为()求双曲线的方程;()设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.答案解析【定点问题】例1:解:由题意知直线的斜率存在,设直线的方程为 联立消去得:,由得,又不合题意,所以直线的斜率的取值范围是或设点,则,直线的方程为,令,得,将代入整理,得 由得代入整理,得,所以直线与轴相交于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 定点 问题 教师
限制150内