圆锥曲线难题汇编.doc
《圆锥曲线难题汇编.doc》由会员分享,可在线阅读,更多相关《圆锥曲线难题汇编.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆锥曲线难题汇编我经过反思与整理,写成此文。一、 圆锥曲线的光学性质11椭圆的光学性质: 从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上; (见图1.1)椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置例如在F1处放置一个热源,那么红外线也能聚焦于F2处,对F2处的物体加热12双曲线的光学性质 :从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2)双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用13 抛物线的光学性质 : 从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线
2、的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果最常见的太阳能热水器,它也是以抛物线镜面聚集太阳
3、光,以加热焦点处的贮水器的图1.3F2F1图1.2AF1F2DO图1.1B要探究圆锥曲线的光学性质,首先必须将这样一个光学实际问题,转化为数学问题,进行解释论证。二、问题转化及证明21圆锥曲线的切线与法线的定义设直线与曲线交于,两点,当直线连续变动时,两点沿着曲线渐渐靠近,一直到,重合为一点,此时直线称为曲线在点处的切线,过与直线垂直的直线称为曲线在点处的法线。此时,我们可以借助圆锥曲线的切线和法线,对这一问题进行转化:2.2圆锥曲线光学性质的证明预备定理 1.若点是椭圆上任一点,则椭圆过该点的切线方程为:。证明:由1当时,过点的切线斜率一定存在,且对式求导:切线方程为点在椭圆上,故 代入得而
4、当时, 切线方程为,也满足式故是椭圆过点的切线方程.预备定理2. 若点是双曲线上任一点,则双曲线过该点的切线方程为:证明:由1当时,过点的切线斜率一定存在,且对式求导:切线方程为点在双曲线上,故 代入得而当时, 切线方程为,也满足式故是双曲线过点的切线方程.预备定理 3.若点是抛物线上任一点,则抛物线过该点的切线方程是证明:由,对求导得:当时,切线方程为即而而当时,切线方程为也满足式故抛物线在该点的切线方程是.定理1. 椭圆上一个点P的两条焦半径的夹角被椭圆在点P处的法线平分(图2.1)已知:如图,椭圆的方程为,分别是其左、右焦点,是过椭圆上一点的切线,为垂直于且过点的椭圆的法线,交轴于设,求
5、证:.xy2L图2.1证法一:在上,L则过点的切线方程为:是通过点且与切线垂直的法线,则法线与轴交于又由焦半径公式得:是的平分线,故可得证法二:由证法一得切线的斜率,而的斜率,的斜率到所成的角满足在椭圆上同理,到所成的角满足而证法三:如图,作点,使点与关于切线对称,连结,交椭圆于点下面只需证明点与重合即可一方面,点是切线与椭圆的唯一交点,则,是上的点到两焦点距离之和的最小值(这是因为上的其它点均在椭圆外)另一方面,在直线上任取另一点即也是直线上到两焦点的距离这和最小的唯一点,从而与重合即而得证定理2 双曲线上一个点P的两条焦半径的夹角被双曲线在点P处的切线平分(图2.2);已知:如图,双曲线的
6、方程为,分别是其左、右焦点,是过双曲线上的一点的切线,交轴于点,设,xy图2.2求证:证明:两焦点为, 在双曲线上则过点的切线切线与轴交于。由双曲线的焦半径公式得双曲线的两焦点坐标为,故故 ,切线为之角分线。yx图2.3定理3 抛物线上一个点P的焦半径与过点P且平行于轴的直线的夹角被抛物线在点P处法线平分(图2.3)。已知:如图,抛物线的方程为为,直线是过抛物线上一点的切线,交轴于,反射线与所成角记为,求证:证明: 如图 ,抛物线的方程为,点在该抛物线上,则过点的切线为切线与轴交于焦点为,(同位角)通过以上问题转化可知,圆锥曲线的光学性质是可以用我们学过的知识证明的。那么它在解题和生产生活中有
7、何应用呢?三、圆锥曲线的光学性质的应用31解决入射与反射问题例1. 设抛物线,一光线从点A(5,2)射出,平行 的对称轴,射在 上的P点,经过反射后,又射到上的Q点,则P点的坐标为_,Q点的坐标为_。解:如图,直线平行于对称轴且A(5,2),则P点的坐标为(4,2)图3.1.1反射线过点设,则解得:图3.1.2图3.1.1例2. 已知椭圆方程为+= 1,若有光束自焦点A(3,0)射出,经二次反射回到A点,设二次反射点为B,C,如图3.1.2所示,则ABC的周长为。解:椭圆方程为+= 1中,A(3,0)为该椭圆的一个焦点自A(3,0)射出的光线AB反射后,反射光线AC定过另一个焦点 (-3,0)
8、故ABC的周长为图3.1.3例3.双曲线,又,已知A(4,2),F(4,0),若由F射至A的光线被双曲线反射,反射光通过P(8,k),则k =。解:入射线FA反射后得到的光线AP的反向延长线定过双曲线的另一个焦点32 解决一类“距离之和”的最值问题张奠宙教授说“在一般情况下,光线在传播过程中,总是选择最近的路线从一点传播到另一点。这虽然还只是一种停留“经验、感觉”层面上的结论,但却为我们研究一类“距离之和” 取值范围问题时指明了思考的方向,从而解决了一个从“想不到”到“想得到”的关键问题。如果再辅以严格的数学证明,这种“经验、感觉”依然是很有价值的、不可替代的。”我读了他的文章,深受启发,并用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 难题 汇编
限制150内