六章节DAI与MAS.ppt
《六章节DAI与MAS.ppt》由会员分享,可在线阅读,更多相关《六章节DAI与MAS.ppt(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、六章节DAI与MAS Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望第六章 DAI与MAS第一节 分布式人工智能(DAI)二、特点 a)系统中的数据、知识以及控制不但在逻辑上,而且在物理上分布的,既没有全局控制,也没有全局的数据存储。B)各个求解机构由计算机网络互连,在问题求解过程中,通信代价要比求解问题的代价低得多。C)系统中诸机构能够相互协作,来求解单个机构难以解决,甚至不能解决的任务。注:DAI的实现可克服原有专家系统、学习系统等弱点,极大提高知识系统的性能
2、,可提高问题求解能力和效率,扩大应用范围、降低软件复杂性。第六章 DAI与MAS第一节分布式人工智能(DAI)三、主要内容 分布式问题求解(DPS)和多Agent系统(MAS)。A)分布式问题求解(DPS)主要考虑怎样将一个特殊问题求解工作在多个合作的、知识共享的模块或结点之间划分。B)多Agent系统(MAS)主要研究自主的智能Agent之间智能行为的协调,为了一个共同的全局目标,也可能是关于各自的不同目标,共享有关问题和求解方法的知识,协作进行问题求解。注:基于Agent的计算将成为软件开发的下一个重要的突破口。第六章 DAI与MAS第二节 分布式问题求解(DPS)一、协作方式 任务分担(
3、task sharing)和结果共享(results sharing)二、求解过程1、任务分解2、任务分配3、子问题求解4、结果综合注:1)典型的任务分解和任务分配的方法有:合同网络(类似于“招标”)、动态层次控制、自然分解、固定分解、部分全局规划;2)在DPS中常用的通信方式有:共享全局存储器、消息传递及二者的结合。3)黑板模型是DPS中使用较多的框架结构。第六章 DAI与MAS第三节 Agent及多Agent系统一、Agent 能够自主连续地在一可动态变化的、存在其它Agent的环境中运行的,并可与环境进行交互的实体,称为Agent。广义地讲,Agent是具有自主性、社会能力(交互性)和反
4、应特征的计算机软/硬件系统。二、简单分类1、软件Agent2、智能Agent3、移动Agent4、WebAgent第六章 DAI与MAS第三节 Agent及多Agent系统三、Agent特性1、自治性 对自己的行为和内部状态有一定的控制权。2、社会性或称可通信性 能够通过某种Agent通信语言与其它Agent进行信息交换。注:任务的承接、多Agent的协作、协商等均以通信为基础。3、交互性 对环境的感知,并通过行为改变环境。4、主动性 主动感知周围环境的变化,并作出基于目标的行为。第六章 DAI与MAS第三节 Agent及多Agent系统三、Agent特性5、协作性 通过协作提高多Agent系
5、统的性能。6、持久性 在“相当长”的时间内连续运行。7、自适应性 根据过去的经验积累知识,并且修改其行为以适应新的环境。8、情态特性 具有信念、意图、愿望等情态。9、可推理性 可根据当前知识和经验,以理性的方式进行推理或预测。第六章 DAI与MAS第三节 Agent及多Agent系统三、Agent特性10、可移动性 可从一个地方移动到另一个地方而保持其内部状态不变。注:Agent可以携带数据,且可在远处执行智能指令。11、诚实性 不会故意提供错误信息。12、友善性 Agent之间不存在互相冲突的目标,总是尽力帮助其它Agent。13、理性总是尽力实现自己的目标。第六章 DAI与MAS第三节 A
6、gent及多Agent系统四、主要研究内容1、微观 Agent本身,包括Agent基本特性、相应理论、内部实现框架。2、宏观 Agent与环境及其它Agent的关系,包括,多Agent系统体系结构、Agent通信语言、Agent交互与协商、Agent协作与合作、多Agent知识交互与信息共享、多Agent学习。第六章 DAI与MAS第三节 Agent及多Agent系统五、Agent理论1、理性Agent 只有保持信念(Belief)、愿望(Desire)和意图(Intention)的理性平衡,才能有效地解决问题,使理性Agent的行为符合环境的特性。其中环境特性不仅仅指环境的客观条件,同时也包
7、含环境中的社会团体因素。所谓理性Agent是指:对于每种可能的感知序列,在所提供的证据和Agent内部知识的基础上,应该做的动作是使该Agent的性能测度(效用,utility)为最大。第六章 DAI与MAS第三节 Agent及多Agent系统五、Agent理论2、BDI Agent模型3、动作理论 情景演算(Situation Calculus)是主要的描述动作的形式逻辑框架,其中主要是使用状态和动作两个概念,并有两条公理来描述动作与状态的关系(动作在满足什么条件的状态下可能发生,在一个状态下某个动作发生以后当前状态如何改变)。第六章 DAI与MAS第三节 Agent及多Agent系统五、A
8、gent理论4、基于演算的Agent模型 演算是一种基于命名概念的并发计算模型,可很自然地表示具有动态结构的进程内及进程间的交互,是一种刻划通信系统的进程演算。引入演算可用于描述Agent行为的并发性5、次协调理论 为了克服“逻辑全知”,同时又保留合理的推理能力。第六章 DAI与MAS第三节 Agent及多Agent系统六、Agent结构1、反应Agent(Reactive Agent)只是简单地对外部刺激产生反应,没有任何内部状态。2、认知Agent(Cognitive Agent)是具有内部状态的主动软件,与具体的领域知识不同,具有知识表示、问题求解表示、环境表示、具体通信协议等。注:认知
9、Agent是一种基于知识的系统,可包括环境描述和丰富的智能行为的逻辑推理能力。3、混合结构第六章 DAI与MAS第三节 Agent及多Agent系统七、Agent通信1、KQML(知识查询与处理语言)和KIF(知识交互格式)KQML定义了一种Agent之间传递消息的标准语法以及一些“动作表达式”,如,Tell、Perform、Reply等。KIF则给信息的内容提供一种语法。2、ACL 通过Agent的情态来描述Agent的抽象特性,即没有预先规定任何具体的Agent执行模式和认知结构。具体地,可包括传递的消息格式及类型含义描述和交互协议描述。第六章 DAI与MAS第三节 Agent及多Agen
10、t系统七、Agent通信3、Speech Acts 一个Agent通过交互影响另一Agent的动作并改变相应Agent的认知结构,称为Speech Act理论。这相当于一个在说,另一个在听,其中有一个Agent称为Speaker,另一个称为Listener。其种类有:命题、命令、承诺、表达、描述。注:1)Speech Act总是假设对Listener的知识有影响 2)可将Speech Act看成Listener的动作 Tell(,)(是Listener)前提:Next_to()K(,)删除:K(,)增加:K(,)第六章 DAI与MAS第三节 Agent及多Agent系统八、Agent的协调与协
11、作1、协调 是指一组Agent完成一些集体活动时相互作用的性质。注:1)协调是对环境的适应2)协调一般会改变Agent的意图3)协调的原因是由于其它Agent的意图存在4)协调是为了解决冲突第六章 DAI与MAS第三节 Agent及多Agent系统八、Agent的协调与协作2、协作 是非对抗的Agent之间保持行为协调的一个特例。注:1)当单个Agent无法独立完成目标,需要其它Agent帮助时,就需要协作。2)协作不仅能提高单个Agent以及相应多Agent系统的整体行为的性能和解决问题的能力,而且可使系统具有更好的灵活性。3)通过协作,可使多Agent系统能解决更多的实际问题,拓宽应用。4
12、)协作可分为协作型、自私型、完全自私型、完全协作型和协作与自私结合型。第六章 DAI与MAS第三节 Agent及多Agent系统八、Agent的协调与协作3、基于计算生态学的协作 计算生态学是研究关于开放系统中决定计算结点的行为与资源使用的交互过程的学科。第六章 DAI与MAS第三节 Agent及多Agent系统九、协商1、协商 在多Agent系统中,协商包含两种含义:一种是子问题和资源的指派;另一种是Agent之间一对一直接协商。注:1)协商是建立在Agent通信语言之上的Agent之间的交互机制,通过协商对于某些问题达成一致意见2)Agent在协商中要采取有效的协商策略,提高自己的意见被其
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 章节 DAI MAS
限制150内