刚体转动及角动量守恒ppt课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《刚体转动及角动量守恒ppt课件.ppt》由会员分享,可在线阅读,更多相关《刚体转动及角动量守恒ppt课件.ppt(57页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、刚体转动及角动量守恒ppt课件 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望刚体运动的分类 刚体:形状固定的质点系(含无数质点、不形变、理想固体。)平 动 刚体任意两点的连线保持方向不变。各点的 相同,可当作质点处理。定轴转动 刚体每点绕同一轴线作圆周运动,且转轴空间位置及方向不变。平面运动 刚体质心限制在一平面内,转轴可平动,但始终垂直于该平面且通过质心定点运动 刚体上各质点都以某一定点为球心的各个球面上运动。一般运动 复杂的运动与平动的混合。定轴转动参量刚体
2、转轴1.角位置转动平面(包含p并与转轴垂直)(t)(t+t)参考方向刚体中任一点刚体定轴转动的运动方程2.角位移3.角速度常量静止匀角速变角速4.角加速度变角加速常量 匀角加速匀角速用矢量表示 或 时,它们与 刚体的转动方向采用右螺旋定则 转动方程求导例题单位:rad-1rad s-2rad srad 50p 51p 52p 53p1rad stsrad100p150pst 50p p 2rad stsp-1rad s-2rad s匀 变 角 速 定 轴 转 动积分求转动方程任意时刻的恒量且 t=0 时 得得或匀变角速定轴转动的角位移方程匀变角速定轴转动的运动方程线量与角量的关系定轴转动刚体在
3、某时刻t 的瞬时角速度为 ,瞬时角加速度为 ,刚体中一质点P至转轴的距离为r质点P 的大小 瞬时线速度瞬时切向加速度瞬时法向加速度这是定轴转动中线量线量与角量角量的基本关系公式对比质点直线运动或刚体平动刚 体 的 定 轴 转 动速度速度角速度角速度加速度加速度角加速度角加速度位移位移角位移角位移匀速直线运动匀速直线运动匀角速定轴转动匀角速定轴转动匀变速直线运动匀变速直线运动匀变角速定轴转动匀变角速定轴转动刚体转动定律引言质 点的运动定律或刚体平动F =m a惯性质量惯性质量合合 外外 力力合加速度合加速度若刚体作定轴转动,服从怎样的运动定律若刚体作定轴转动,服从怎样的运动定律?主要概念使刚体产
4、生转动效果的合外力矩刚体的转动定律刚体的转动惯量合外力矩 外力在转动平面上对转轴的力矩使刚体发生转动M =r F111力矩切向1Ft tFrM叉乘右螺旋1M2MM =r F222M =r F sin j j222大小2r2=2Ft td2=2F1M2M合外力矩=M+d22F大小M=d11F=r22Ft tr11Ft tr1=1Ft tM =r F sin j j111大小1d1=1Fj j1d1r1F1P1OF2r22Ft tP2j j2d2切向方向转动定律某质元fi受内力受外力FiFi+f=aii其法向n 分量均通过转轴,不产生转动力矩。t t其切向投影式为ij jFisin+if sinq
5、 qit t=ai=rib bt tnFiOrifiij jq qi瞬时角速度角加速度瞬时等式两边乘以 ri 并对所有质元及其所受力矩求和=内力矩成对抵消=0+riifsinq qiiFij jsinri合外力矩 Mb bri得Mb bri=转动惯量某质元fi受内力受外力FiFi+f=aii其法向n 分量均通过转轴,不产生转动力矩。t t其切向投影式为ij jFisin+if sinq qit t=ai=rib bt tnFiOrifiij jq qi瞬时角速度角加速度瞬时等式两边乘以 ri 并对所有质元及其所受力矩求和=内力矩成对抵消=0+riifsinq qiiFij jsinri合外力矩
6、 Mb bri得Mb bri=Mb bri=与刚体性质及质量分布有关的物理量,用 表示称为 转动惯量转动惯量I刚体的转动定律即刚体所获得的角加速度 的大小与刚体受到的 合外力矩 的大小成正比,与刚体的转动惯量 成反比。转动惯量的计算Mb b=I将刚体转动定律与质点运动定律F=am对比转动惯量 是刚体转动惯性的量度II 与刚体的质量、形状、大小及质量对转轴的分布情况有关质量连续分布的刚体用积分求I 为体积元 处的密度II的单位为分立质点的算例可视为分立质点结构的刚体转轴 若连接两小球(视为质点)的轻细硬杆的质量可以忽略,则转轴0.75直棒算例质量连续分布的刚体匀直细杆对中垂轴的匀直细杆对端垂轴的
7、质心新轴质心轴平行移轴定理平行移轴定理对对新轴新轴的转动惯量的转动惯量对质心轴的转动惯量对质心轴的转动惯量新轴新轴对心轴的平移量对心轴的平移量例如:例如:时时代入可得代入可得端圆盘算例匀质薄圆盘对心垂轴的 取半径为 微宽为 的窄环带的质量为质元球体算例匀质实心球对心轴的可看成是许多半径不同的共轴薄圆盘的转动惯量 的迭加距 为 、半径为 、微厚为的薄圆盘的转动惯量为其中常用结果LRmm匀质薄圆盘匀质薄圆盘匀质细直棒匀质细直棒转轴通过中心垂直盘面22I=m R123I=m L1转轴通过端点与棒垂直其它典型匀质矩形薄板转轴通过中心垂直板面I=(a +b )22m12匀质细圆环转轴通过中心垂直环面I=
8、m R 2匀质细圆环转轴沿着环的直径2I=2m R匀质厚圆筒转轴沿几何轴I=(R1 +R2 )22m2匀质圆柱体转轴通过中心垂直于几何轴mI=R +22m124L匀质薄球壳转轴通过球心2I=2m R3转动定律例题一合外力矩 应由各分力矩进行合成。合外力矩 与合角加速度 方向一致。在定轴转动中,可先设一个正轴向(或绕向),若分力矩与此向相同则为正,反之为复。与时刻对应,何时何时则何时 ,则何时恒定恒定。匀直细杆一端为轴水平静止释放转动定律例题二T1T2a(以后各例同)Rm1m2m轮轴无摩擦轻绳不伸长轮绳不打滑T2T1G1G2T2T1a ab b T1 m1 g=m1am2 g T2=m2a(T2
9、 T1)R=Ib b a=Rb bI=m R 22转动平动线-角联立解得a=m1m1+m2+gm2m21gT1=m1(g+a)T2=m2(g a)m1 gm2 g如果考虑有转动摩擦力矩 Mr,则 转动式为(T2 T1)R Mr=Ib b再联立求解。转动定律例题三Rm1m细绳缠绕轮缘Rm(A)(B)恒力F滑轮角加速度 b b细绳线加速度 a(A)(B)转动定律例题四Rm1m2mm=5kgm2=1kg m1=3kgR=0.1mT2T1T1T2G1G2b baa对对m1m2m分别应用分别应用和和质点运动和刚体转动定律质点运动和刚体转动定律m1 g T1=m1aT2 m2 g=m2a(T1 T2)R=
10、Ib b及 a=Rb bI=mR221得b b =(m1-m2)gR(m1+m2+m 2)常量(m1-m2)gR(m1+m2+m 2)故由(m1-m2)gR(m1+m2+m 2)2 (rad)gt物体从静止开始运动时,滑轮的 转动方程转动定律例题五q qq q 从等倾角 处静止释放两匀直细杆地面两者瞬时角加速度之比两者瞬时角加速度之比213q q1q q1321根据短杆的角加速度大短杆的角加速度大且与匀质直杆的质量无关且与匀质直杆的质量无关转动动能刚体中任一质元 的速率该质元的动能对所有质元的动能求和转动惯量 II得得力矩的功力力 的元功的元功力对转动刚体所作的功用力矩的功来计算力对转动刚体所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 刚体 转动 角动量 守恒 ppt 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内