动量牛顿定律.ppt
《动量牛顿定律.ppt》由会员分享,可在线阅读,更多相关《动量牛顿定律.ppt(89页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、动量牛顿定律 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望第三章 动量牛顿运动定律 动量守恒定律 3.1 牛顿第一定律和惯性参考系牛顿第一定律和惯性参考系力力是物体间的相互作用是物体间的相互作用.力是引起运动状态力是引起运动状态改变的原因改变的原因.1.提出了力和惯性的概念提出了力和惯性的概念 任何物体任何物体,只要不受其它物体作用,将会永远只要不受其它物体作用,将会永远保持静止或匀速直线运动的状态保持静止或匀速直线运动的状态.牛顿第一定律牛顿第一定律(惯性定律
2、惯性定律)惯性惯性 物体所固有的,保持原来运动状态不物体所固有的,保持原来运动状态不变的特性变的特性.2.是大量观察与实验事实的抽象与概括是大量观察与实验事实的抽象与概括 3.定义了惯性系定义了惯性系 (1)惯性定律成立的参考系称之为惯性参考系,简惯性定律成立的参考系称之为惯性参考系,简称惯性系称惯性系.惯性系是相对整个宇宙的平均加速度为零的惯性系是相对整个宇宙的平均加速度为零的参照系参照系.(2)惯性定律可以对质点的某一分量成立惯性定律可以对质点的某一分量成立.地面参考系地面参考系固结在地面上的参考系固结在地面上的参考系.基准参考系基准参考系(FK4系系)是以相对于选定的若干颗恒是以相对于选
3、定的若干颗恒星平均静止的位形为基准的参考系星平均静止的位形为基准的参考系.太阳参考系太阳参考系固结在太阳上的参考系固结在太阳上的参考系.3.2 惯性质量和动量惯性质量和动量 3.2.1 惯性质量惯性质量3.2.4 伽利略的相对性原理伽利略的相对性原理 3.2.3 牛顿运动定律牛顿运动定律 3.2.2 动量动量动量变化率和力动量变化率和力 3.2 惯性质量和动量惯性质量和动量 3.2.1 惯性质量惯性质量 1.两质点在气桌上碰撞两质点在气桌上碰撞 12 两滑块相碰,改变滑块两滑块相碰,改变滑块1 1、2 2初速度初速度,反复实验,发现滑块反复实验,发现滑块1 1、2 2速度改变量各次虽然不同,但
4、速度改变量各次虽然不同,但总有总有或或 为常量,与二滑块有关为常量,与二滑块有关.2.惯性质量惯性质量 取巴黎国际计量局中铂铱合金国际千克原器取巴黎国际计量局中铂铱合金国际千克原器为标准物体,规定其质量为为标准物体,规定其质量为 m0=1kg(千克千克),此即,此即国际单位质量的基本单位国际单位质量的基本单位.一个原子质量单位一个原子质量单位(u)为碳的同位素为碳的同位素12C原子原子质量的质量的1/12.令标准物体与某物体相碰,并令令标准物体与某物体相碰,并令m就是某物体就是某物体“质量的操作型定义质量的操作型定义”.从物体质量的定义可见,从物体质量的定义可见,m大者较难改变运动大者较难改变
5、运动状态或速度,状态或速度,m小者则较易小者则较易.所以所以m应是物体惯性的应是物体惯性的反映,即惯性的大小反映,即惯性的大小.以以惯性量度的质量称惯性质惯性量度的质量称惯性质量量,简称质量,简称质量.经典力学经典力学 m=常量常量 相对论力学相对论力学 m0为静止质量,为静止质量,v 和和 c 分别表示质点速度和真空分别表示质点速度和真空中的光速中的光速.3.2.2 动量动量 动量变化率和力动量变化率和力 定义定义 对任何两质点,有对任何两质点,有 1.动量动量 动量随时间连续而光滑地变化,动量随时间连续而光滑地变化,2.力的定义力的定义 诸力作用于质点诸力作用于质点m 质点动量定理质点动量
6、定理 质点动量对时间的变化率等于作用于该质质点动量对时间的变化率等于作用于该质 点的力的矢量和点的力的矢量和.3.2.3 牛顿运动定律牛顿运动定律 在经典力学中,质点质量不变,由力的定义有在经典力学中,质点质量不变,由力的定义有 1.牛顿第二定律牛顿第二定律 2.牛顿第三定律牛顿第三定律 作用力与反作用力之间有作用力与反作用力之间有 3.说明说明 (1)关于力的定义式关于力的定义式:是是牛顿定律的最初形式,在相对论中同样成立牛顿定律的最初形式,在相对论中同样成立.而而 式只有在式只有在 v m2 ,a1x 为正,为正,a2x为负,表明为负,表明 m1的加速的加速度与度与 x 轴正向相同;若轴正
7、向相同;若 m1 m2,则,则 a1x为负,表明为负,表明 m1 的的加速度与加速度与 x 轴的正向相反;若轴的正向相反;若 m1=m2,加速度为零,即,加速度为零,即加速度的方向大小均取决于加速度的方向大小均取决于 m1和和 m2 .例题例题2 斜面质量为斜面质量为m1,滑块质量为,滑块质量为 m2,m1与与 m2 之间、之间、m1与平面之间均无摩擦,用水平力与平面之间均无摩擦,用水平力 F 推推斜面斜面.问斜面倾角问斜面倾角 应多大应多大,m1和和 m2相对静止相对静止.m1 m2 Oxym1 m2 解解受力分析如右上图受力分析如右上图,m1和和 m2相对静止,因而相对静止,因而有共同的加
8、速度有共同的加速度 a.根据牛顿第二、三定律,得根据牛顿第二、三定律,得 直角坐标中分量式直角坐标中分量式 解方程得解方程得 3.4.2 变力作用下的直线运动变力作用下的直线运动 若已知力求运动学方程,需作积分计算若已知力求运动学方程,需作积分计算.动力学方程为动力学方程为 或或 若已知力、坐标和速度的初始条件,可通过积若已知力、坐标和速度的初始条件,可通过积分求解方程分求解方程.(设方程为线性的(设方程为线性的.)例题例题3 已知一质点从静止自高空下落,设重力加速已知一质点从静止自高空下落,设重力加速度始终保持一常量,质点所受空气阻力与其速率成正度始终保持一常量,质点所受空气阻力与其速率成正
9、比比.求质点速度并与自由下落相比求质点速度并与自由下落相比.解解 建立以开始下落处为坐标原点且铅直向下的坐建立以开始下落处为坐标原点且铅直向下的坐标系标系Oy.又选开始下落时为计时起点又选开始下落时为计时起点.动力学方程为动力学方程为 重力重力 阻力阻力 它在它在Oy 轴的投影为轴的投影为 该式可写作该式可写作 作不定积分,得作不定积分,得 因因 t 0,故故 ,于是,于是 Otvy红色直线表示自由下落红色直线表示自由下落 蓝色曲线表示有阻力时,蓝色曲线表示有阻力时,最后可达一极限最后可达一极限终终极速度极速度终极速度终极速度 与高度无关与高度无关 自由落体自由落体 与高度有关与高度有关 3.
10、4.3 质点的曲线运动质点的曲线运动 在自然坐标系中,质点动学方程分量式在自然坐标系中,质点动学方程分量式 法向力法向力(各力在法线方向投影的代数和各力在法线方向投影的代数和)切向力切向力(各力在切线方向投影的代数和各力在切线方向投影的代数和)曲率半径曲率半径 3.4.4 质点的平衡质点的平衡 质点平衡方程质点平衡方程 质点平衡条件质点平衡条件质点处于平衡时,作用于质点质点处于平衡时,作用于质点的合力等于零的合力等于零.直角坐标系中的分量式直角坐标系中的分量式 3.5 非惯性中的动力学非惯性中的动力学(了解了解)3.5.1 直线加速参考系中的惯性力直线加速参考系中的惯性力 3.5.2 离心惯性
11、力离心惯性力 3.5.3 科里奥利力科里奥利力 问题:问题:车的车的a=0 时单摆和小球的状态符合牛顿定律,时单摆和小球的状态符合牛顿定律,a0时单摆和小球的状态为什么不符合牛顿定律?时单摆和小球的状态为什么不符合牛顿定律?a=0a 03.5 非惯性中的动力学非惯性中的动力学3.5.1 直线加速参考系中的惯性力直线加速参考系中的惯性力 设动参考系设动参考系O 相对于静参考系相对于静参考系O以加速度以加速度 作直线作直线加速运动加速运动,则质点在则质点在O系中的加速度系中的加速度 和质点在和质点在O系中系中的加速度的加速度 关系为关系为平移惯性力平移惯性力 真实力真实力 所以所以 即即 其中其中
12、 3.5.2 离心惯性力离心惯性力 物体位于过原点而垂直转轴的平面内,相对于圆物体位于过原点而垂直转轴的平面内,相对于圆盘静止,则盘静止,则对于观察者对于观察者1:对于观察者对于观察者2:离心惯性力离心惯性力(离心力离心力)其中其中:3.5.3 科里奥利力科里奥利力 OABCC3C2C1 OA B CC2 C1 C3 物体相对地面沿物体相对地面沿直线直线OABC运动运动 物体相对转盘沿曲物体相对转盘沿曲线线OA BC3 运动运动 效应一:效应一:1.定性说明定性说明 OAB C OABC物体相对转盘沿物体相对转盘沿直线直线OABC运动运动物体相对地面沿物体相对地面沿曲线曲线OABC 运动运动效
13、应二:效应二:物体相对惯性系作曲线运动,表明物体必受真物体相对惯性系作曲线运动,表明物体必受真实力作用实力作用.物体所受真实力与物体所受惯性力大小物体所受真实力与物体所受惯性力大小相等、方向相反。相等、方向相反。2.科里奥利力定量表述科里奥利力定量表述 考虑物体相对地面走的是曲线,则相对转盘走考虑物体相对地面走的是曲线,则相对转盘走的是直线的是直线.OABCDDO设物体相对转盘速度为设物体相对转盘速度为 设物体向右方的加速度为设物体向右方的加速度为aK 比较以上两式,得比较以上两式,得 考虑到方向考虑到方向 科里奥利加速度科里奥利加速度 质点相对转盘走的是直线质点相对转盘走的是直线 科里奥利力
14、科里奥利力 傅科摆直接证明了地球的自转傅科摆直接证明了地球的自转北极悬挂的单摆北极悬挂的单摆摆面轨迹摆面轨迹摆平面转动方向摆平面转动方向 3.科里奥利力的应用科里奥利力的应用 旋风旋风 低压低压气区气区3.6 用冲量表述的动量定理用冲量表述的动量定理 3.6.1 力的冲量力的冲量 3.6.2 用冲量表述的动量定理用冲量表述的动量定理 3.6 用冲量表述的动量定理用冲量表述的动量定理 3.6.1 力的冲量力的冲量 冲量冲量力对时间的积累作用,是矢量力对时间的积累作用,是矢量.力在力在 t 内的元冲量内的元冲量 力在力在 t-t0 时间间隔内的冲量时间间隔内的冲量 平均力定义平均力定义 平均力的冲
15、量平均力的冲量 单位单位:在在F-t 图中图中,I 是是F-t 曲线下的面积曲线下的面积,元冲量与元冲量与F 的方向一致的方向一致,而一段时间间而一段时间间隔内力的冲量的方向决定隔内力的冲量的方向决定于这段时间诸元冲量矢量于这段时间诸元冲量矢量和的方向和的方向.冲力冲力作用时间很短且量值变化很大的力作用时间很短且量值变化很大的力.3.6.2 用冲量表述的动量定理用冲量表述的动量定理 力对时间的积累效果力对时间的积累效果?即即:力在时间上的积累作用产生的效果是使质点力在时间上的积累作用产生的效果是使质点的动量增加的动量增加.冲量的方向冲量的方向速度增量的方向速度增量的方向.微分形式微分形式 积分
16、形式积分形式 例题例题1 气体对容器壁的压强是由大量分子碰撞器壁气体对容器壁的压强是由大量分子碰撞器壁产生的产生的.从分子运动角度研究气体压强,首先要考虑从分子运动角度研究气体压强,首先要考虑一个分子碰撞器壁的冲量一个分子碰撞器壁的冲量.设某种气体分子质量为设某种气体分子质量为m,以速率以速率 v 沿与器壁法线成沿与器壁法线成60 的方向运动与器壁碰撞,的方向运动与器壁碰撞,反射到容器内,沿与法线成反射到容器内,沿与法线成60 的另一方向以速率的另一方向以速率 v 运运动,如图所示,求该气体分子作用于器壁的冲量动,如图所示,求该气体分子作用于器壁的冲量.A606060yA60 6060BC解解
17、 将气体分子视为质点将气体分子视为质点.一个分子在一次碰撞器壁一个分子在一次碰撞器壁中动量的增量为中动量的增量为即分子一次碰撞施于器壁的冲量为即分子一次碰撞施于器壁的冲量为 即冲量可采用作图法,按几何关系(余弦定理、即冲量可采用作图法,按几何关系(余弦定理、正弦定理等)求解正弦定理等)求解.3.7 质点系的动量定理质点系的动量定理 和质心运动定理和质心运动定理 3.7.1 质点系动量定理质点系动量定理 3.7.2 质心运动定理质心运动定理 3.7.3 质点系相对于质心系的动量质点系相对于质心系的动量 3.7 质点系的动量定理质点系的动量定理 和质心运动定理和质心运动定理 3.7.1 质点系动量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动量 牛顿 定律
限制150内