《2022年第章-一次函数知识点总结.docx》由会员分享,可在线阅读,更多相关《2022年第章-一次函数知识点总结.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选学习资料 - - - - - - - - - 第十九章 一次函数学问点总结基本概念1、变量: 在一个变化过程中可以取不同数值的量;常量: 在一个变化过程中只能取同一数值的量;例题:在匀速运动公式 s vt 中 ,v 表示速度 ,t 表示时间 , s 表示在时间 t 内所走的路程 ,就变量是 _,常量是_;在圆的周长公式 C=2 r中,变量是 _,常量是 _. 2、函数: 一般的,在一个变化过程中,假如有两个变量 x 和 y,并且对于 x 的每一个确定的值,y 都有唯独确定的值与其对应,那么我们就把 x 称为自变量,把 y 称为因变量, y 是 x 的函数;*判定 Y 是否为 X 的函数,
2、只要看 X 取值确定的时候, Y 是否有唯独确定的值与之对应(或者观看图像画竖线,如只有一个交点就 Y 是 X 的函数)例题:以下函数(1)y= x 2y=2x1 3y=1 x 4 y= 1 3x2 5y=x21 中,是一次函数的有()(A)4 个(B)3 个(C) 2 个(D)1 个3、 自变量取值范畴:一个函数的自变量答应取值的范畴4、确定函数自变量取值范畴的方法:(1)关系式为整式时,函数自变量取值范畴为全体实数;(3)关系式含有二次根式时,被开放方数大于等于零;2)关系式含有分式时,分式的分母不等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数自变量取值范
3、畴仍要和实际情形相符合,使之有意义;例题:以下函数中,自变量 x 的取值范畴是 x2的是()1 2Ay= 2 x By= Cy= 4 x Dy= x 2x 2x 25、函数的图像 :一般来说,对于一个函数,假如把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式;7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);其次步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(依据横坐标由
4、小到大的次序把所描出的各点用平滑曲线连接起来);8、函数的表示方法列表法:一目了然,使用起来便利,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律;解析式法:简洁明白,能够精确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示;图象法:形象直观,但只能近似地表达两个变量之间的函数关系;- 1 -名师归纳总结 - - - - - - -第 1 页,共 8 页精选学习资料 - - - - - - - - - 9、正比例函数及性质一般地,形如 y=kxk 是常数, k 0的函数叫做正比例函数,其中 k 叫做比例系数 . 注:正比例函数一般形式 y=
5、kx k 不为零 k 不为零 x 指数为 1 b 取零当 k0 时,直线 y=kx 经过三、一象限,从左向右上升,即随 x 的增大 y 也增大;当 k0 时,图像经过一、三象限;k0,y 随 x 的增大而增大;k0 时,向上平移;当 b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y 随 x 的增大而增大;k0 时,将直线 y=kx 的图象向上平移 b 个单位;(上加下减,左加右减)当 b0 b0 图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过其次、三、四象限经过其次、四象限k0 时,向上平移;当 b0 或 ax+b0(a, b 为常数, a 0)的形式,所以
6、解一元一次不等式可以看作:当一次函数值大于 0(小于 0)时,求自变量的取值范畴 . 从图象上看 , 相当于已知直线 y=ax+b 在 x 轴的上方(下方)图像所对应的横坐标的取值范畴;. 17、一次函数与二元一次方程组:任意一个二元一次方程都可以转化成 y=kx+b 的形式,所以每个二元一次方程组都对应一个一次函数,也对应一条直线,每个二元一次方程组都对应两个一次函数,也对应两条直线;从数的角度看,解方程组相当于求出自变量x 的取值,使两个函数值y 相等;从形的角度看,解方程组相当于确定两条直线交点的坐标;(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=y=a 1a
7、 bxc的图象相同 . c 2的图象交点 . b(2)二元一次方程组a 1xb 1yc 1的解可以看作是两个一次函数xc 1和 y=a2xa 2xb 2yc 22b 1b 1bb 218、一次函数的图像与两坐标轴所围成三角形的面积一次函数 y=kxb 的图象与两条坐标轴的交点:与y 轴的交点( 0,b),与 x 轴的交点(b,0).k直线(b 0)与两坐标轴围成的三角形面积为s=1bb2 b2k2k- 4 -名师归纳总结 - - - - - - -第 4 页,共 8 页精选学习资料 - - - - - - - - - 常见题型一、 考察一次函数定义1、如函数ym1m 2x3是 y 关于 x 的
8、一次函数, 就 m的值为, ;解析式为. . 2、要使 y=m 2xn1+n 是关于 x 的一次函数 ,n,m 应满意二、 考查图像性质1、已知一次函数 y=(m2)x+m3 的图像经过第一,第三,第四象限,就 m 的取值范畴是 _2、如一次函数 y=(2 m) x+m 的图像经过第一、.二、 .四象限, .就 m.的取值范畴是 _ 3、已知 m 是整数,且一次函数 y m 4 x m 2 的图象不过其次象限,就 m 为 . 4、直线 y kx b 经过一、二、四象限,就直线 y bx k 的图象只能是图 4 中的()5、直线 px qy r 0 pq 0 如图 5,就以下条件正确选项()A
9、pq r10B pq r0)C pq r1D pq r06、假如ab0,a,就直线yaxc不通过()cbbA第一象限0B其次象限C第三象限D第四象限7、如图 6,两直线1ykxb 和2ybxk 在同一坐标系内图象的位置可能是(8、假如ab0,a,就直线yaxc不通过()cbbA第一象限 B其次象限 C第三象限 D第四象限9、 b 为 时,直线 y 2 x b 与直线 y 3 x 4 的交点在x轴上 . 10、要得到 y=3 x4 的图像,可把直线 y=3 x()2 2- 5 -名师归纳总结 - - - - - - -第 5 页,共 8 页精选学习资料 - - - - - - - - - (A)向左平移 4 个单位( B)向右平移 4 个单位(C)向上平移 4 个单位(D)向下平移 4 个单位11、已知一次函数 y=kx+5,假如点 P1(x1,y1),P2(x2,y2)都在函数的图像上,且当 x1x2 时,有 y1y2(B)y1 =y2(C)y1 y2(D)不能比较三、 交点问题1、如直线 y=3x1 与 y=xk 的交点在第四象限,就 k 的取值范畴是()(A)k1(B)1 k1 (D)k1 或 k0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?- 8 -名师归纳总结 - - - - - - -第 8 页,共 8 页
限制150内