随机过程知识点(共19页).doc
《随机过程知识点(共19页).doc》由会员分享,可在线阅读,更多相关《随机过程知识点(共19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一章:预备知识1.1概率空间随机试验,样本空间记为。定义1.1设是一个集合,F是的某些子集组成的集合族。如果(1)F;(2)F ,F; (3)若F ,则F;则称F为代数(Borel域)。(,F)称为可测空间,F中的元素称为事件。由定义易知:定义1.2 设(,F)是可测空间,P()是定义在上的实值函数。如果则称P是上的概率,()称为概率空间,P(A)为事件A的概率。定义1.3 设()是概率空间,如果对任意,有: 则称为独立事件族。1.2 随机变量及其分布随机变量X,分布函数,n维随机变量或n维随机向量,联合分布函数,是独立的。1.3随机变量的数字特征定义1.7 设随机
2、变量X的分布函数为,若,则称 为X的数学期望或均值。上式右边的积分称为Lebesgue-Stieltjes积分。 方差,为X、Y的协方差,而 为X、Y的相关系数。若则称X、Y不相关。 (Schwarz不等式)若则 1.4 特征函数、母函数和拉氏变换 定义1. 10 设随机变量的分布函数为F(x),称 为X的特征函数随机变量的特征函数具有下列性质:(1)1( 2 ) g (t)在 上一致连续。(3)(4)若是相互独立的随机变量,则的特征函数,其中是随机变量X的特征函数,.定义1 . 11 设 是n维随机变量,t = () 则称,为X的特征函数。定义1.12 设X是非负整数值随机变量,分布列 则称
3、为X的母函数。 1.5 n维正态分布 定义1.13 若n维随机变量的联合概率密度为 式中,是常向量,是正定矩阵,则称为n维正态随机变量或服从n维正态分布,记作。 可以证明,若,则的特征函数为 为了应用的方便,下面,我们不加证明地给出常用的几个结论。 性质1 若则。 性质2 设,若正定,则。即正态随机变量的线性变换仍为正态随机变量。性质3 设是四维正态随机变量,则 1.6 条件期望 给定Y=y时,X的条件期望定义为由此可见除了概率是关于事件Y=y的条件概率以外,现在的定义与无条件的情况完全一样。 E(X|Y=y)是y的函数,y是Y的一个可能值。若在已知Y的条件下,全面地考虑X的均值,需要以Y代替
4、y,E(X|Y)是随机变量Y的函数,也是随机变量,称为 X在 Y下的条件期望。 条件期望在概率论、数理统计和随机过程中是一个十分重要的概念,下面我们介绍一个极其有用的性质。 性质 若随机变量X与Y的期望存在,则 -(1) 如果Y是离散型随机变量,则上式为如果Y是连续型,具有概率密度f(x),则(1)式为第二章 随机过程的概念与基本类型2.1 随机过程的基本概念定义2.1 设()是概率空间,T是给定的参数集,若对每个tT,有一个随机变量X(t,e)与之对应,则称随机变量族是()的随机过程,简记为随机过程。T称为参数集,通常表示时间。通常将随机过程解释为一个物理系统。X(t)表示在时刻t所处的状态
5、。X(t)的所有可能状态所构成的集合称为状态空间或相空间,记为I。从数学的观点来说,随机过程是定义在T上的二元函数。对固定的t,X(t,e)是定义在T上的普通函数,称为随机过程的一个样本函数或轨道,样本函数的全体称为样本函数的空间。 2.2 随机过程的函数特征=X(t),tT 的有限维分布函数族。有限维特征函数族:其中:定义2.3 设=X(t),tT 的均值函数,。二阶矩过程,协方差函数:相关函数: 定义2.4 设X(t),tT ,Y(t),tT 是两个二阶矩过程,互协方差函数,互相关函数。 2.3 复随机过程 定义 2.5 设,是取实数值的两个随机过程,若对任意 ,其中 ,则称为复随机过程
6、定理 2.2 复随机过程的协方差函数 具有性质 (1)对称性:;(2)非负定性2.4 几种重要的随机过程一、正交增量过程定义2.6 设是零均值的二阶矩过程,若对任意的有公式,则称正交增量过程。二、独立增量过程定义2.7 设是随机过程,若对任意的正整数和随机变量是互相独立的,则称是独立增量过程,又称可加过程。定义 2.8 设是平稳独立增量过程,若对任意随机变量的分布仅依赖于,则称是平稳独立增量过程。三、马尔可夫过程定义2.9设为随机过程,若对任意正整数n及,,且其条件分布=,(2.6) 则称为马尔可夫过程。四、正态过程和维纳过程定义 2.10设是随机过程,若对任意正整数n和,(,)是n维正态随机
7、变量,则称是正态过程或高斯过程。定义 2.11设为随机过程,如果(1);(2)它是独立、平稳增量过程;(3)对,增量,则称为维纳过程,也称布朗运动过程。定理 2.3 设是参数为的维纳过程,则(1) 任意t,;(2) 对任意,特别: 。五、平稳过程定义 2.12 设是随机过程,如果对任意常数和正整数当时,与有相同的联合分布,则称为严平稳过程,也称狭义平稳过程。定义 2.13 设是随机过程,如果(1)是二阶矩过程;(2)对于任意常数;(3)对任意的,则称为广义平稳过程,简称为平稳过程。若T为离散集,则称平稳过程为平稳序列。第三章 泊松过程.1 泊松过程的定义和例子 定义3.1 计数过程 定义3.2
8、 称计数过程为具有参数0的泊松过程,若它满足下列条件 (1) X(0)= 0; (2) X(t)是独立增量过程; (3) 在任一长度为t的区间中,事件A发生的次数服从参数t0的泊松分布,即对任意s,t0,有 注意,从条件(3)知泊松过程是平稳增量过程且。由于,表示单位时间内事件A发生的平均个数,故称为此过程的速率或强度。 定义3.3 称计数过程为具有参数0的泊松过程,若它满足下列条件 (1) X(0)= 0; (2) X(t)是独立、平稳增量过程;(3) X(t) 满足下列两式: (3.2) 定理3.1 定义3.2与定义3.3是等价的。3.2 泊松过程的基本性质一、数字特征设是泊松过程, 一般
9、泊松过程的有。有特征函数定义,可得泊松过程的特征函数为 二、时间间隔与等待时间的分布为第n次事件A出现的时刻或第n次事件A的等待时间,是第n个时间间隔,它们都是随机变量。 定理3.2 设是具有参数的泊松分布,是对应的时间间隔序列,则随机变量是独立同分布的均值为的指数分布。 定理3.3 设是与泊松过程对应的一个等待时间序列,则服从参数为n与的分布,其概率密度为 三、到达时间的条件分布 定理3.4 设是泊松过程,已知在0,t内事件A发生n次,则这n次到达时间与相应于n个0,t上均匀分布的独立随机变量的顺序统计量有相同的分布。3.3 非齐次泊松过程定义3.4 称计数过程为具有跳跃强度函数的非齐次泊松
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随机 过程 知识点 19
限制150内