2022年函数单调性教案2 .pdf
《2022年函数单调性教案2 .pdf》由会员分享,可在线阅读,更多相关《2022年函数单调性教案2 .pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品教学教案函数的单调性课题引入某市昨天 24 小时内的气温变化图观察这张气温变化图你能看出一天中温度的变化趋势吗?这种某一区域内函数上升或下降的趋势叫函数的单调性如何用数学符号语言来描述这种图像的“上升”或“下降”呢?对于定义域内某区间的 任意两个自变量x1,x2,当 x1x2时,都有那么就说xfy在该区间上是增函数对于定义域内某区间的 任意两个自变量x1,x2,当 x1x2时,都有那么就说xfy在该区间上是减函数定义一般地,设函数 y=f(x)的定义域为 I,如果对于定义域 I 内的某个区间 D 内的任意两个自变量x1,x2,当 x1x2时,都有 f(x1)f(x2),那么就说 f(x)在
2、区间 D 上是增函数同理如果对于定义域I 内的某个区间 D 内的任意两个自变量x1,x2,当x1f(x2),那么就说 f(x)在区间 D 上是减函数增函数减函数定义一般地,设函数f(x)的定义域为 I,如果对于定义域I 内某个区间 D 上的任意两个自变量x1,x2当 x1x2时,都有 f(x1)f(x2),那么就说函数 f(x)在区间 D 上是增函数当 x1f(x2),那么就说函数 f(x)在区间 D 上是减函数图像描述自左向右看图像是上升的自左向右看图像是下降的精品教学教案单调区间如果函数 y=f(x)在某个区间上是增函数或是减函数,那么就说函数 y=f(x)在这一区间具有(严格的)单调性,
3、区间D 叫做 y=f(x)的单调区间写法如果区间端点有意义,区间端点写成开与闭均可。如果区间端点无意义,则只能写成开区间如图是定义在区间 5,5上的函数 y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?判读正误1.如果()fx在(0,+)是单调增函数,f(1)f(2)2 如果 f(1)f(2),则在()f x在(0,+)上一定是单调增函数3()f x在定义域 I 内某个区间 D上是增函数,对于D上的任意两个自变量x1,x2 若有 f(x1)f(x2)则一定有 x1x2。一、单调性判断方法1.图像法.画出常见的几种函数,并指出其单调区间。1.一次函数2.二次
4、函数3.反比例函数y=(x1)y=x22 y=1xy=2-|x+1|文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9
5、M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9
6、E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:
7、CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 H
8、Z9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 Z
9、M9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编
10、码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3精品教学教案y=f(x)cbaoyxy=|f(x)|cbaoyxy=23x2x2.定义法讨论函数4yxx在 0,的单调性。用定义法判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间 D
11、上的单调性的一般步骤:任取 x1,x2D,且 x1x2;作差 f(x1)f(x2);变形(通常是因式分解和配方);定号(即判断差f(x1)f(x2)的正负);下结论(即指出函数f(x)在给定的区间 D 上的单调性)3、复合函数法1yx11yx变式写出 y=x21的单调区间。文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y
12、3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5
13、J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S
14、5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M
15、5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8
16、Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y
17、1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H
18、5M5Y3精品教学教案二、已知函数单调性求参数范围1.已知函数2()2(1)2f xxax在区间,4 上是减函数,求实数 a的取值范围.2.若函数 f(x)=(a-1)x-1 为 R 上的增函数,则实数a 的取值范围为xby在),0(上是减函数,则b 的范围是一次函数单调性看反比例函数单调性看二次函数单调性看三、函数值的大小关系自变量的大小关系1.已知()f x是 R上的减函数,则满足的1()(1)ffx的 x 取值范围是变式已知()yfx在定义域1,1上是减函数,且(1)(2),fafaa求的取值范围.四、应用函数的单调性求最大(小)值 1.函数)5,1(,64)(2xxxxf的值域为2.求
19、函数341yx在区间 4,6 上的最值。文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E
20、6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:C
21、H2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ
22、9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM
23、9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码
24、:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6
25、HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3文档编码:CH2P8Q5J8Y6 HZ9M9Y1S5S10 ZM9E6H5M5Y3精品教学教案五、复合函数单调性1.讨论函数32f2xxx的单调性所谓复合函数就是由两个或两个以上的基本函数构成,这种函数先要考虑基本函数的单调性,然后再考虑整体的单调性求复合函数 y=f(g(x)的单调区间的步骤:(1)确定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年函数单调性教案2 2022 函数 调性 教案
限制150内