2022年函数的解析式的求法教案 .pdf
《2022年函数的解析式的求法教案 .pdf》由会员分享,可在线阅读,更多相关《2022年函数的解析式的求法教案 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习好资料欢迎下载第一讲函数的解析式的求法求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析.一换元法题 1已知 f(3x+1)=4x+3,求 f(x)的解析式.练习 1若xxxf1)1(,求)(xf.二配变量法题 2已知221)1(xxxxf,求)(xf的解析式.练习 2若xxxf2)1(,求)(xf.三待定系数法题 3设)(xf是一元二次函数,)(2)(xfxgx,且212)()1(xxgxgx,求)(xf与)(xg.练习 3设二次函数)(xf满足)2()2(xfxf,且图象在 y 轴上截距为 1,在x 轴上截得的线段长为22,求)(xf的表达式
2、.学习好资料欢迎下载四解方程组法题 4设函数)(xf是定义(,0)(0,+)在上的函数,且满足关系式xxfxf4)1(2)(3,求)(xf的解析式.练习 4若xxxfxf1)1()(,求)(xf.五特殊值代入法题 5若)()()(yfxfyxf,且2)1(f,求值)2004()2005()3()4()2()3()1()2(ffffffff.练习 5 设)(xf是定义在N上的函数,且2)1(f,21)()1(xfxf,求)(xf的解析式.六利用给定的特性求解析式.题 6设)(xf是偶函数,当 x0 时,xexexf2)(,求当 x0 时,)(xf的表达式.练 习6 对x R,)(xf满 足)1(
3、)(xfxf,且 当x 1,0 时,文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档
4、编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1
5、U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档
6、编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1
7、U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档
8、编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1
9、U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5学习好资料欢迎下载xxxf2)(2求当 x9,10 时)(xf的表达式.七归纳递推法题 7设11)(xxxf,记)()(xfffxfn,求)(2004xf.八相关点法题 8 已知函数12)(xxf,当点 P(x,y)在 y=)(xf的图象上运动时,点 Q(3,2xy)在 y=g(x)的图象上,求函数 g(x).九构造函数法
10、题 9 若)(xf表示 x 的 n 次多项式,且当 k=0,1,2,n 时,1)(kkkf,求)(xf.课堂小结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义。练习:1向高为 H的水瓶中注水,注满为止,如果注水量 V与水深 h 的函数关系如图所Y X 文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编
11、码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U
12、2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编
13、码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U
14、2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编
15、码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U
16、2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5学习好
17、资料欢迎下载示,那么水瓶的形状是2从盛满 20 升纯洒精的容器中倒出1 升,然后用水填满,再倒出 1 升混合溶液后又用水填满,这样继续下去,如果第 k 次倒后共倒出纯洒精x 升,第 k+1次倒后共倒出纯洒精 f(x)升,求 f(x)的表达式.(f(x)=12019x)3设二次函数)(xf满足)2()2(xfxf,且它的图象与 y 轴交于点(0,1),在x 轴上截得的线段长为22,求)(xf的表达式.(1)2(21)(2xxf)4 对满足1x的所有实数 x,函数)(xf满足xxxfxxf)13()13(,求所有可能的)(xf.(23227)(xxxxf,(1x)5设)(xf是定义在N上的函数,若
18、1)1(f,且对任意的 x,y 都有:xyyxfyfxf)()()(,求)(xf.()1(21)(2xxf)求 函 数 解 析 式文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L
19、4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V
20、8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L
21、4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V
22、8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L
23、4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V
24、8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5文档编码:CA2R9F2M4V8 HV2I1U2P1O9 ZK3W4L4B9H5学习好资料欢迎下载教学目标:使学生明确待定系数法、换元法、配凑法是求函数解析式常用的方法,并会用这些方法求函数解析式重点、难点:重点:待定系数法求函数解析式。难点:换元法与配凑法求函数解析式教学方法:讲练结合法学生已熟悉用待定系数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年函数的解析式的求法教案 2022 函数 解析 求法 教案
限制150内