2013_2018年全国1卷文科数学分类汇编_立体几何.docx
《2013_2018年全国1卷文科数学分类汇编_立体几何.docx》由会员分享,可在线阅读,更多相关《2013_2018年全国1卷文科数学分类汇编_立体几何.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、20132018年全国1卷文科数学分类汇编:立体几何一、选择填空题1、【2013全国1卷文11】某几何体的三视图如下图,那么该几何体的体积为()A168B88C1616D8162、【2013全国1卷文15】是球的直径上一点,为垂足,截球所得截面的面积为,那么球的外表积为_3、【2014全国1卷文8】如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,那么这个几何体是 A三棱锥 B三棱柱 C四棱锥 D四棱柱 第1题图 第3题图4、【2015全国1卷文6】九章算术是我国古代容极为丰富的数学名著,书中有如下问题:“今有委米依垣角,下周八尺,高五尺,问积及为米几何?其意思为:“在屋墙角处
2、堆放米如图,米堆为一个圆锥的四分之一,米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有A斛B斛C斛 D斛5、【2015全国1卷文11】圆柱被一个平面截去一局部后与半球半径为组成一个几何体,该几何体的三视图中的正视图和俯视图如下图,假设该几何体的外表积为,那么( )ABCD 第4题图 第5题图6、【2016全国1卷文7】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.假设该几何体的体积是,那么它的外表积是A17 B18 C20 D28 7、【2016全国1卷文11】平面过正方体的顶点平面,平面
3、,平面,那么所成角的正弦值为 A B C D8、【2017全国1卷文6】如图,在以下四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,那么在这四个正方体中,直线AB与平面MNQ不平行的是 A B C D9、【2017全国1卷文16】三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径假设平面SCA平面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,那么球O的外表积为_10、【2018全国1卷文5】圆柱的上、下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为8的正方形,那么该圆柱的外表积为 A. B. C. D. 11、【2018全国1卷文9】某圆柱的高为
4、2,底面周长为16,其三视图如右图圆柱外表上的点在正视图上的对应点为,圆柱外表上的点在左视图上的对应点为,那么在此圆柱侧面上,从到的路径中,最短路径的长度为 A. B. C. 3 D. 212、【2018全国1卷文10】在长方体中,与平面所成的角为,那么该长方体的体积为 A. B. C. D. 二、解答题1、【2013全国1卷文19】如图,三棱柱中,.(1)证明:;(2)假设,求三棱柱的体积2、【2014全国1卷文19】如图,三棱柱中,侧面为菱形,的中点为,且平面.1证明:2假设,求三棱柱的高.3、【2015全国1卷文18】如图四边形为菱形,为与交点,1证明:平面平面;2假设,三棱锥的体积为,
5、求该三棱锥的侧面积.4、【2016全国1卷文18】如图,正三棱锥的侧面是直角三角形,顶点在平面的正投影为点,在平面的正投影为点,连结并延长交于点.1证明:是的中点;2在图中作出点在平面的正投影说明作法及理由,并求四面体的体积5、【2017全国1卷文18】如图,在四棱锥PABCD中,AB/CD,且1证明:平面PAB平面PAD;2假设PA=PD=AB=DC,且四棱锥PABCD的体积为,求该四棱锥的侧面积6、【2018全国1卷文18】如图,在平行四边形中,以为折痕将折起,使点到达点的位置,且1证明:平面平面;2为线段上一点,为线段上一点,且,求三棱锥的体积20132018年全国1卷文科数学分类汇编:
6、立体几何参考答案一、选择填空题1、【答案】A2、【答案】 【解析】如图:3、【答案】B考点:三视图的考察【名师点睛】此题主要考察了空间几何体的三视图,考生在复原空间几何体的过程中,一定要坚持三视图的法那么:长对正,高平齐,宽相等;此题主要考察了考生的空间想象力.4、【答案】B【解析】试题分析:设圆锥底面半径为r,那么=,所以米堆的体积为=,故堆放的米约为1.6222,应选B.考点:此题主要考察圆锥的性质与圆锥的体积公式5、【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为,圆柱的高为,其外表积为,解得,应选B.考点:简单几何体的三视图;球
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 _2018 全国 文科 数学 分类 汇编 立体几何
限制150内