2021届高考数学大一轮复习(2021-2021高考题库)第2章 第11节 导数的应用 理 新人教A版.doc
《2021届高考数学大一轮复习(2021-2021高考题库)第2章 第11节 导数的应用 理 新人教A版.doc》由会员分享,可在线阅读,更多相关《2021届高考数学大一轮复习(2021-2021高考题库)第2章 第11节 导数的应用 理 新人教A版.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、20092013年高考真题备选题库第2章 函数、导数及其应用第11节 导数的应用考点一 应用导数研究函数的单调性1(2013新课标全国,5分)已知函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值解:本题主要考查导数的基本知识,利用导数判断函数单调性、求极值(1)f(x)ex(axab)2x4.由已知得f(0)4,f(0)4.故b4,ab8.从而a4,b4.(2)由(1)知,f(x)4ex(x1)x24x,f(x)4ex(x2)2x44(x2).令f(x)0得,xln 2或x2.从而当
2、x(,2)(ln 2,)时,f(x)0;当x(2,ln 2)时,f(x)0时,f(x)0,当0x时,f(x)时,f(x)0,函数f(x)单调递增所以函数f(x)的单调递减区间是,单调递增区间是.当a0时,令f(x)0,得2ax2bx10.由b28a0,得x1,x2.当0xx2时,f(x)x2时,f(x)0,函数f(x)单调递增所以函数f(x)的单调递减区间是,单调递增区间是.综上所述,当a0,b0时,函数f(x)的单调递减区间是(0,);当a0,b0时,函数f(x)的单调递减区间是,单调递增区间是;当a0时,函数f(x)的单调递减区间是,单调递增区间是,.(2)由题意知,函数f(x)在x1处取
3、得最小值由(1)知是f(x)的唯一极小值点,故1,整理得2ab1即b12a.令g(x)24xln x,则g(x).令g(x)0,得x,当0x0,g(x)单调递增;当x时,g(x)0,g(x)单调递减因此g(x)g1ln 1ln 40.故g(a)0,即24aln a2bln a0,即ln a2b.3(2013湖南,13分)已知函数f(x)ex.(1)求f(x)的单调区间;(2)证明:当f(x1)f(x2)(x1x2)时,x1x20.解:本题主要考查函数求导、函数的单调区间和不等式的证明,意在结合转化思想和函数思想,考查考生的计算能力、利用函数思想证明不等式的能力(1)函数f(x)的定义域为(,)
4、f(x)exexexex.当x0;当x0时,f(x)0.所以f(x)的单调递增区间为(,0),单调递减区间为(0,)(2)证明:当x0,ex0,故f(x)0;同理,当x1时,f(x)0.当f(x1)f(x2)(x1x2)时,不妨设x1x2,由(1)知,x1(,0),x2(0,1)下面证明:x(0,1),f(x)f(x),即证exex.此不等式等价于(1x)ex0,令g(x)(1x)ex,则g(x)xex(e2x1)当x(0,1)时,g(x)0,g(x)单调递减,从而g(x)g(0)0.即(1x)ex0.所以x(0,1),f(x)f(x)而x2(0,1),所以f(x2)f(x2),从而f(x1)
5、f(x2)由于x1,x2(,0),f(x)在(,0)上单调递增,所以x1x2,即x1x20.4(2009江苏,5分)函数f(x)x315x233x6的单调减区间为_解析:f(x)3x230x333(x210x11)3(x1)(x11)0,解得:1x11,故减区间为(1,11)答案:(1,11)5(2012福建,14分)已知函数f(x)exax2ex,aR.(1)若曲线yf(x)在点(1,f(1)处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线yf(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.解:(1)由于f(x)ex2axe,曲线yf(x)在
6、点(1,f(1)处的切线斜率k2a0,所以a0,即f(x)exex.此时f(x)exe,由f(x)0得x1.当x(,1)时,有f(x)0;当x(1,)时,有f(x)0.所以f(x)的单调递减区间为(,1),单调递增区间为(1,)(2)设点P(x0,f(x0),曲线yf(x)在点P处的切线方程为yf(x0)(xx0)f(x0),令g(x)f(x)f(x0)(xx0)f(x0),故曲线yf(x)在点P处的切线与曲线yf(x)只有一个公共点P等价于函数g(x)有唯一零点因为g(x0)0,且g(x)f(x)f(x0)exex02a(xx0)(1)若a0,当xx0时,g(x)0,则xx0时,g(x)g(
7、x0)0;当xx0时,g(x)0,则xx0时,g(x)g(x0)0.故g(x)只有唯一零点xx0.由P的任意性,a0不合题意(2)若a0,令h(x)exex02a(xx0),则h(x0)0,h(x)ex2a.令h(x)0,得xln(2a),记x*ln(2a),则当x(,x*)时h(x)0,从而h(x)在(,x*)内单调递减;当x(x*,)时,h(x)0,从而h(x)在(x*,)内单调递增若x0x*,由x(,x*)时,g(x)h(x)h(x*)0;由x(x*,)时,g(x)h(x)h(x*)0.知g(x)在R上单调递增所以函数g(x)在R上有且只有一个零点xx*.若x0x*,由于h(x)在(x*
8、,)内单调递增,且h(x0)0,则当x(x*,x0)时,有g(x)h(x)h(x0)0,g(x)g(x0)0;任取x1(x*,x0)有g(x1)0.又当x(,x1)时,易知g(x)exax2(ef(x0)xf(x0)x0f(x0)ex1ax2(ef(x0)xf(x0)x0f(x0)ax2bxc,其中b(ef(x0),cex1f(x0)x0f(x0)由于a0,则必存在x2x1,使得axbx2c0.所以g(x2)0,故g(x)在(x2,x1)内存在零点即g(x)在R上至少有两个零点若x0,可证函数g(x)在R上至少有两个零点综上所述,当a0时,曲线yf(x)上存在唯一点P(ln(2a),f(ln(
9、2a),曲线在该点处的切线与曲线只有一个公共点P.6(2010新课标全国,12分)设函数f(x)ex1xax2.(1)若a0,求f(x)的单调区间;(2)若当x0时f(x)0,求a的取值范围解:(1)a0时,f(x)ex1x,f(x)ex1.当x(,0)时,f(x)0.故f(x)在(,0)单调减少,在(0,)单调增加(2)f(x)ex12ax.由(1)知ex1x,当且仅当x0时等号成立故f(x)x2ax(12a)x,从而当12a0,即a时,f(x)0(x0),而f(0)0,于是当x0时,f(x)0.由ex1x(x0)可得ex1x(x0),从而当a时,f(x)ex12a(ex1)ex(ex1)(
10、ex2a),故当x(0,ln2a)时, f(x)0,而f(0)0,于是当x(0,ln2a)时,f(x)0时,f(x)与f (x)的情况如下:x(,k)k(k,k)k(k,)f (x)00f(x)4k2e10所以 ,f(x)的单调递增区间是(,k)和(k,);单调递减区间是(k,k)当k0时,因为f(k1)e,所以不会有x(0,),f(x).当k0时,由(1)知f(x)在(0,)上的最大值是f(k).所以x(0,),f(x)等价于f(k).解得k0时,f(x)()A有极大值,无极小值B有极小值,无极大值C既有极大值又有极小值D既无极大值也无极小值解析:本题考查导数的应用以及转化能力由题意x2f(
11、x),令g(x)x2f(x),则g(x),且f(x),因此f(x).令h(x)ex2g(x),则h(x)ex2g(x)ex,所以x2时,h(x)0;0x2时,h(x)0时,f(x)是单调递增的,f(x)既无极大值也无极小值答案:C3(2013湖北,5分)已知a为常数,函数f(x)x(ln xax)有两个极值点x1,x2(x1x2),则()Af(x1)0,f(x2)Bf(x1)0,f(x2)Cf(x1)0,f(x2)Df(x1)0,f(x2)解析:本题主要考查函数与导数的基础知识与基本运算,意在考查考生分析问题、处理问题的能力f(x)x(ln xax),f(x)ln x2ax1.又函数f(x)x
12、(ln xax)有两个极值点x1,x2,f(x)ln x2ax1有两个零点x1,x2,即函数g(x)ln x与函数h(x)2ax1有两个交点a0,且0x1x2.设经过点(0,1)的曲线g(x)ln x的切线与曲线g(x)ln x相切于点(x0,ln x0),则切线方程为yln x0(xx0),将点(0,1)代入,得x01,故切点为(1,0)此时,切线的斜率k1,要使函数g(x)ln x与函数h(x)2ax1的图象有两个交点,结合图象可知,02a1,即0a且0x11x2.由函数的单调性得:(0,x1)x1(x1,x2)x2(x2,)f(x)00f(x)最小值最大值f(x1)f(1)a.故选D.答
13、案:D4(2013福建,13分)已知函数f(x)xaln x(aR)(1)当a2时,求曲线yf(x)在点A(1,f(1)处的切线方程;(2)求函数f(x)的极值解:本小题主要考查函数、导数的几何意义、函数的极值等基础知识,考查运算求解能力,考查函数与方程思想、分类与整合思想、数形结合思想、化归与转化思想函数f(x)的定义域为(0,),f(x)1.(1)当a2时,f(x)x2ln x,f(x)1(x0),因而f(1)1,f(1)1,所以曲线yf(x)在点A(1,f(1)处的切线方程为y1(x1),即xy20.(2)由f(x)1,x0知:当a0时,f(x)0,函数f(x)为(0,)上的增函数,函数
14、f(x)无极值;当a0时,由f(x)0,解得xa,又当x(0,a)时,f(x)0,从而函数f(x)在xa处取得极小值,且极小值为f(a)aaln a,无极大值综上,当a0时,函数f(x)无极值;当a0时,函数f(x)在xa处取得极小值aaln a,无极大值5(2013浙江,14分)已知aR,函数f(x)x33x23ax3a3.(1)求曲线yf(x)在点(1,f(1)处的切线方程;(2)当x0,2时,求|f(x)|的最大值解:本题以三次函数为载体,主要考查利用导数研究函数的性质、二次函数、绝对值等基础知识,意在考查考生的推理能力,函数与方程、分类讨论、数形结合等思想方法(1)由题意得f(x)3x
15、26x3a,故f(1)3a3.又f(1)1,所以所求的切线方程为y(3a3)x3a4.(2)由于f(x)3(x1)23(a1),0x2,故当a0时,有f(x)0,此时f(x)在0,2上单调递减,故|f(x)|maxmax|f(0)|,|f(2)|33a.当a1时,有f(x)0,此时f(x)在0,2上单调递增,故|f(x)|maxmax|f(0)|,|f(2)|3a1.当0a1时,设x11,x21,则0x1x20,f(x1)f(x2)4(1a)0.从而f(x1)|f(x2)|.所以|f(x)|maxmaxf(0),|f(2)|,f(x1)()当0a|f(2)|.又f(x1)f(0)2(1a)(2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届高考数学大一轮复习2021-2021高考题库第2章 第11节 导数的应用 新人教A版 2021 高考 数学 一轮 复习 题库 11 导数 应用 新人
链接地址:https://www.taowenge.com/p-58266155.html
限制150内