备战中考数学一元二次方程组的综合热点考点难点.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《备战中考数学一元二次方程组的综合热点考点难点.doc》由会员分享,可在线阅读,更多相关《备战中考数学一元二次方程组的综合热点考点难点.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、备战中考数学一元二次方程组的综合热点考点难点一、一元二次方程1李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由【答案】 (1) 李明应该把铁丝剪成12 cm和28 cm的两段;(2) 李明的说法正确,理由见解析.【解析】试题分析:(1)设剪成的较短的这段为xcm,较长的这段就为(40x)cm就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)
2、设剪成的较短的这段为mcm,较长的这段就为(40m)cm就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确试题解析:设其中一段的长度为cm,两个正方形面积之和为cm2,则,(其中),当时,解这个方程,得,应将之剪成12cm和28cm的两段;(2)两正方形面积之和为48时, 该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确考点:1一元二次方程的应用;2几何图形问题2已知关于x的方程x2(2k+1)x+k2+10(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边
3、的长,且k2,求该矩形的对角线L的长【答案】(1)k;(2).【解析】【分析】(1)根据关于x的方程x2(2k1)xk210有两个不相等的实数根,得出0,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n,利用根与系数的关系得出m+n=5,mn=5,则矩形的对角线长为,利用完全平方公式进行变形即可求得答案.【详解】(1)方程x2(2k1)xk210有两个不相等的实数根,(2k1)241(k21)4k30,k;(2)当k2时,原方程为x25x50,设方程的两个根为m,n,mn5,mn5,矩形的对角线长为:.【点睛】本题考查了根的判别式、根与
4、系数的关系、矩形的性质等,一元二次方程根的情况与判别式的关系:(1)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根3已知关于的方程和,是否存在这样的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在方程中,由一元二次方程的根与系数的关系,用含n的式子表示出两个实数根的差的平方,把方程分解因式,建立方程求n,要注意n的值要使方程的根是整数.【详解】若存在n满足题意.设x1,x2是方程的两个根,则x1+x2=2n,x1x2=,所以(x1-x2)2=4
5、n2+3n+2,由方程得,(x+n-1)x-2(n+1)=0,若4n2+3n+2=-n+1,解得n=-,但1-n=不是整数,舍.若4n2+3n+2=2(n+2),解得n=0或n=-(舍),综上所述,n=0.4已知关于x的一元二次方程有两个实数根求k的取值范围;设方程两实数根分别为,且满足,求k的值【答案】(1);(2)【解析】【分析】根据方程有实数根得出,解之可得利用根与系数的关系可用k表示出和的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍【详解】解:关于x的一元二次方程有两个实数根,即,解得由根与系数的关系可得,解得,或,舍去,【点睛】本题考查了一元二次方程a,b
6、,c为常数根的判别式当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根以及根与系数的关系5图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为ABC和DEF,其中B=90,A=45,BC=,F=90,EDF=30, EF=2将DEF的斜边DE与ABC的斜边AC重合在一起,并将DEF沿AC方向移动在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合)(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:FCD的最大度数为 ;当FCAB时,AD= ;当以线段AD、FC、BC的长度为三边
7、长的三角形是直角三角形,且FC为斜边时,AD= ;FCD的面积s的取值范围是 .【答案】(1)2;(2) 60;.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)当点E与点C重合时,FCD的角度最大,据此求解即可.过点F作FHAC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.过点F作FHAC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.设AD=x,把FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)B=90,A=45,BC=,AC=12.CD=10,A
8、D=2. (2)F=90,EDF=30,DEF=60.当点E与点C重合时,FCD的角度最大,FCD的最大度数=DEF=60. 如图,过点F作FHAC于点H,EDF=30, EF=2,DF=. DH=3,FH=.FCAB,A=45,FCH=45. HC=. DC=DH+HC=.AC=12,AD=.如图,过点F作FHAC于点H,设AD=x,由知DH=3,FH=,则HC=.在RtCFH中,根据勾股定理,得.以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,即,解得.设AD=x,易知,即.而,当时,;当时,.FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的
9、判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.6按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】7已知关于的方程有两个实数根.(1)求的取值范围; (2)若方程的两实数根分别为,且,求的值.【答案】(1) (2)4【解析】试题分析:根据方程的系数结合根的判别式即可得出 ,解之即可得出结论.根据韦达定理可得: ,结合 即可得出关于 的一元二次方程,解之即可得出值,再由的结论即可确定值.试题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 中考 数学 一元 二次 方程组 综合 热点 考点 难点
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内