2023年最新版新课标人教版小学六年级下册数学毕业总复习知识点汇总.doc
《2023年最新版新课标人教版小学六年级下册数学毕业总复习知识点汇总.doc》由会员分享,可在线阅读,更多相关《2023年最新版新课标人教版小学六年级下册数学毕业总复习知识点汇总.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版六年级下册数学总复习知识点汇总峦庄小学 霍 波 2023年5月24日第一部分 数和数的运算(一)整 数1.自然数、负数和整数(1)、自然数 :我们在数物体的时候,用来表达物体个数的0,1,2,3叫做自然数。一个物体也没有,用0表达。0是最小的自然数。1是自然数的基本单位,任何一个自然数都是由若干个1组成。0是最小的自然数,没有最大的自然数。(2)、负数:负数和正数是表达相反意义的量自然数正整数(1、2、3、4、)(3)整 数 零 (0既不是正数,也不是负数)负整数(-1、-2、-3、-4)2、计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的
2、进率都是10。这样的计数法叫做十进制计数法。3、数位 :计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。4、数的整除 :整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。(1)假如数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是互相依存的。 如:由于35能被7整除,所以35是7的倍数,7是35的约数。(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的 因数是它自身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。(3)一个数的倍数的个数是无限的,其中最小的倍数是它
3、自身。如:3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。(4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。(5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。(7)一个数各位数上的和能被9整除,这个数就能被9整除。(8)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。(9)能被2整除的数叫做偶数。最小的偶数是0.不能被2整除的数叫做奇数。最小的奇数是1(10)一个数,假如只有1和它自身两个
4、因数,这样的数叫做质数(或素数)。最小的质数是2100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。(11)一个数,假如除了1和它自身尚有别的约数,这样的数叫做合数。最小的合数是4例如 4、6、8、9、12都是合数。(12)1不是质数也不是合数,自然数除了1外,不是质数就是合数。假如把自然数按其约数的个数的不同分类,可分为质数、合数和1。(15)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。(16)
5、把一个合数用质因数相乘的形式表达出来,叫做分解质因数。 例如:把28=2X 2 X7(17)几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公约数。例如:12的因数有1、2、3、4、6、12; 18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。(18)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有1时,这两个合数互质,假如几个数中任意两个都互质,就说这几个数两两
6、互质。假如较小数是较大数的约数,那么较小数就是这两个数的最大公约数。假如两个数是互质数,它们的最大公约数就是1。(19)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如:2的倍数有2、4、6 、8、10、12、14、16、18 3的倍数有3、6、9、12、15、18 其中6、12、18是2、3的公倍数,6是它们的最小公倍数。假如较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。假如两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1 、小数的意义(1)把整数1平均提成10份、
7、100份、1000份 得到的十分之几、百分之几、千分之几 可以用小数表达。(2)一位小数表达十分之几,两位小数表达百分之几,三位小数表达千分之几(3)一个小数由整数部分、小数部分和小数点组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。(4)在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。2、小数的分类(1)纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。(2)带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小
8、数。(3)有限小数: 小数部分的数位是有限的小数,叫做有限小数。例如: 41.7 、 25.3 、 0.23 都是有限小数。(4)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如: 4.33 3.1415926 (5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断反复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12.109109 (7)一个循环小数的小数部分,依次不断反复出现的数字叫做这个循环小数的循环节。例如: 3.99 的循环节是“ 9 ” , 0.
9、5454 的循环节是“ 54 ” 。(8)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如: 3.111 0.5656 (9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。例如: 3.1222 0.03333 (10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。假如循环节只有 一个数字,就只在它的上面点一个点。例如: 3.777 简写作:3. ; 0.5302302 简写作:0.50 。(三)分数1、分数的意义(1)把单位“1”平均提成若干份,表达这样的一份或者几份的数叫做分数。(2)在分数里,中间的横
10、线叫做分数线;分数线下面的数,叫做分母,表达把单位“1”平均提成多少份;分数线下面的数叫做分子,表达有这样的多少份。(3)把单位“1”平均提成若干份,表达其中的一份的数,叫做分数单位。2、分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和本来分数相等的同分母分数,叫做通分。(四)百分数 :表达一个数是另一个数的
11、百分之几的数 叫做百分数,也叫做百分率 或比例。百分数通常用%来表达。百分号是表达百分数的符号。二 、方法(一)数的读法和写法1、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。(二)数的改写一个较大的多位数,为了读写方便,经常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改
12、写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表达。 例如: 省略亿后面的尾数是 13 亿。3、大小比较(1)比较整数大小: (2)比较小数的大小:(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。(三)数的互化1、小数化成分数:本来有几位小数,就在1的后面写几个零作分母,把本来的小数去掉小数点作分子,能约分的要约分
13、。2、分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保存三位小数。3、一个最简分数,假如分母中除了2和5以外,不具有其他的质因数,这个分数就能化成有限小数;假如分母中具有2和5 以外的质因数,这个分数就不能化成有限小数。4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保存三位小数),再把小数化成百分数。7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四)数的整除1、把一个合
14、数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2、求几个数的最大公因数3、求几个数的最小公倍数4、成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。(五)约分和通分(依据分数的基本性质)(1)约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。(2)通分的方法:先求出本来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三、性质和规律(一)商不变的规律商不变的规律:
15、在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,本来的数就扩大10倍;小数点向右移动两位,本来的数就扩大100倍;小数点向右移动三位,本来的数就扩大1000倍2、小数点向左移动一位,本来的数就缩小10倍;小数点向左移动两位,本来的数就缩小100倍;小数点向左移动三位,本来的数就缩小1000倍3、小数点向左移或者向右移位数不够时,要用“0补足位。(四)分数的基本性质(通分和约分的依据)分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),
16、分数的大小不变。(五)分数与除法的关系1、被除数除数= 2、由于零不能作除数,所以分数的分母不能为零。四、四则运算(一)运算的意义1、整数加法:把两个数合并成一个数的运算叫做加法。2、整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减加法和减法互为逆运算。3、整数乘法:求几个相同加数的和的简便运算叫做乘法。在乘法里,0和任何数相乘都 得0; 1和任何数相乘都的任何数。4、整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。乘法和除法互为逆运算。在除法里,0不能做除数。5 、小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数
17、乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。 6、乘积是1的两个数叫做互为倒数。(二)各部分的关系1、加数+加数=和; 和-一个加数=另一个加数2、被减数-减数=差; 被减数-差=减数; 差+减数=被减数3、因数因数=积; 积一个因数=另一个因数4、被除数除数=商 ; 被除数商=除数; 商除数=被除数(三)运算定律1、加法互换律:a+b=b+a 。 2、加法结合律:(a+b)+c=a+(b+c) 。3、乘法互换律:ab=ba。 4、乘法结合律:(ab)c=a(bc) 。5、乘法分派律:(a+b)c=ac+bc 。 6、减法的性质:a-b-c=a-(b+c) 。7、除法的性质
18、abc=a(bc)(四)运算法则(整数、小数、分数,加减乘除)(五)运算顺序1、没有括号的混合运算:同级运算从左往右依次运算;两级运算 先算乘、除(二级运算),后算加减(一级运算)。2、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。3、加法和减法叫做第一级运算。乘法和除法叫做第二级运算。五、应用1、典型应用题 。(1)平均数:数量之和数量的个数=平均数。例: 一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。分析:把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”, + = , 汽车的平
19、均速度为: 2 =75 (千米)(2) 归一问题例 : 一个织布工人,在七月份织布 4774 米 ,照这样计算,织布6930米,需要多少天?分析:必须先求出平均天天织布多少米,就是单一量。 6930(477 431)=45(天)(3)归总问题:例: 修一条水渠,原计划天天修 800 米 , 6 天修完。实际 4 天修完,天天修了多少米?分析:由于规定出天天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 800 6 4=1200 (米)(4)行程问题:解题关键及规律:同时同地相背而行:路程=速度和
20、时间。同时相向而行:相遇时间=相遇路程速度和; 速度和=相遇路程相遇时间 相遇路程=速度和时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速差同时同地同向而行(速度慢的在后,快的在前):路程=速度差时间。例: 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式: 2 8 (16-9)=4 (小时)(5)植
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 最新版 新课 标人教版 小学 六年级 下册 数学 毕业 复习 知识点 汇总
限制150内