2023年高中数学知识点总结超全.doc
《2023年高中数学知识点总结超全.doc》由会员分享,可在线阅读,更多相关《2023年高中数学知识点总结超全.doc(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学 必修1知识点第一章 集合与函数概念【1.1.1】集合的含义与表达 (1)集合的概念 集合中的元素具有拟定性、互异性和无序性.(2)常用数集及其记法表达自然数集,或表达正整数集,表达整数集,表达有理数集,表达实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表达法 自然语言法:用文字叙述的形式来描述集合.列举法:把集合中的元素一一列举出来,写在大括号内表达集合.描述法:|具有的性质,其中为集合的代表元素.图示法:用数轴或韦恩图来表达集合.(5)集合的分类具有有限个元素的集合叫做有限集.具有无限个元素的集合叫做无限集.不具有任何元素的集合叫做空集().(
2、6)子集、真子集、集合相等名称记号意义性质示意图子集(或A中的任一元素都属于B(1)AA(2)(3)若且,则(4)若且,则或真子集AB(或BA),且B中至少有一元素不属于A(1)(A为非空子集)(2)若且,则集合相等A中的任一元素都属于B,B中的任一元素都属于A(1)AB(2)BA(7) 已知集合有个元素,则它有个子集,它有个真子集,有个非空子集,它有非空真子集.(8)交集、并集、补集名称记号意义性质示意图交集且(1)(2)(3) 并集或(1)(2)(3) 补集1 2 【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集或把当作一个整体,化成,型不等式来求解
3、(2)一元二次不等式的解法判别式二次函数的图象一元二次方程的根(其中无实根的解集或的解集【1.2.1】函数的概念(1)函数的概念设、是两个非空的数集,假如按照某种相应法则,对于集合中任何一个数,在集合中都有唯一拟定的数和它相应,那么这样的相应(涉及集合,以及到的相应法则)叫做集合到的一个函数,记作函数的三要素:定义域、值域和相应法则只有定义域相同,且相应法则也相同的两个函数才是同一函数(2)区间的概念及表达法设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做注意:对于集合与区间,前者可
4、以大于或等于,而后者必须(3)求函数的定义域时,一般遵循以下原则:是整式时,定义域是全体实数是分式函数时,定义域是使分母不为零的一切实数是偶次根式时,定义域是使被开方式为非负值时的实数的集合对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1中,零(负)指数幂的底数不能为零若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集对于求复合函数定义域问题,一般环节是:若已知的定义域为,其复合函数的定义域应由不等式解出对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论由实际问题拟定的函数,其定义域除使函数故意义
5、外,还要符合问题的实际意义(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,假如在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度不同求函数值域与最值的常用方法: 观测法:对于比较简朴的函数,我们可以通过观测直接得到值域或最值配方法:将函数解析式化成具有自变量的平方式与常数的和,然后根据变量的取值范围拟定函数的值域或最值判别式法:若函数可以化成一个系数具有的关于的二次方程,则在时,由于为实数,故必须有,从而拟定函数的值域或最值不等式法:运用基本不等式拟定函数的值域或最值换元法:通过变量代换达成
6、化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题反函数法:运用函数和它的反函数的定义域与值域的互逆关系拟定函数的值域或最值数形结合法:运用函数图象或几何方法拟定函数的值域或最值函数的单调性法【1.2.2】函数的表达法(5)函数的表达方法表达函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表达两个变量之间的相应关系列表法:就是列出表格来表达两个变量之间的相应关系图象法:就是用图象表达两个变量之间的相应关系(6)映射的概念设、是两个集合,假如按照某种相应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它相应,那么这样的相应(涉及集合,以
7、及到的相应法则)叫做集合到的映射,记作给定一个集合到集合的映射,且假如元素和元素相应,那么我们把元素叫做元素的象,元素叫做元素的原象【1.3.1】单调性与最大(小)值(1)函数的单调性定义及鉴定方法函数的性 质定义图象鉴定方法函数的单调性假如对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1 x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数(1)运用定义(2)运用已知函数的单调性(3)运用函数图象(在某个区间图 象上升为增)(4)运用复合函数假如对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1f(x2),那么就说f(x)在这个区间上是减函
8、数(1)运用定义(2)运用已知函数的单调性(3)运用函数图象(在某个区间图象下降为减)(4)运用复合函数在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数yxo对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减(2)打“”函数的图象与性质分别在、上为增函数,分别在、上为减函数(3)最大(小)值定义 一般地,设函数的定义域为,假如存在实数满足:(1)对于任意的,都有; (2)存在,使得那么,我们称是函数 的最大值,记作一般地,设函数的定义域为,假如存在实数满足:(1)对于
9、任意的,都有;(2)存在,使得那么,我们称是函数的最小值,记作【1.3.2】奇偶性(4)函数的奇偶性定义及鉴定方法函数的性 质定义图象鉴定方法函数的奇偶性假如对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做奇函数(1)运用定义(要先判断定义域是否关于原点对称)(2)运用图象(图象关于原点对称)假如对于函数f(x)定义域内任意一个x,都有f(x)=f(x),那么函数f(x)叫做偶函数(1)运用定义(要先判断定义域是否关于原点对称)(2)运用图象(图象关于y轴对称)若函数为奇函数,且在处有定义,则奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性
10、相反在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数补充知识函数的图象(1)作图运用描点法作图:拟定函数的定义域; 化解函数解析式;讨论函数的性质(奇偶性、单调性); 画出函数的图象运用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象平移变换伸缩变换 对称变换 (2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参
11、数的关系(3)用图 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具要重视数形结合解题的思想方法第二章 基本初等函数()(1)根式的概念假如,且,那么叫做的次方根当是奇数时,的次方根用符号表达;当是偶数时,正数的正的次方根用符号表达,负的次方根用符号表达;0的次方根是0;负数没有次方根式子叫做根式,这里叫做根指数,叫做被开方数当为奇数时,为任意实数;当为偶数时,根式的性质:;当为奇数时,;当为偶数时, (2)分数指数幂的概念正数的正分数指数幂的意义是:且0的正分数指数幂等于0正数的负分数指数幂的意义是:且0的负分数指数幂没故意义
12、注意口诀:底数取倒数,指数取相反数(3)分数指数幂的运算性质 (4)指数函数函数名称指数函数定义0101函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低2.2对数函数(1) 对数的定义 若,则叫做认为底的对数,记作,其中叫做底数,叫做真数负数和零没有对数对数式与指数式的互化:(2)几个重要的对数恒等式,(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中)(4)对数的运算性质 假如,那么加法: 减法:数乘: 换底公式:(5)对数函数函数名称对数函数
13、定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子假如对于在中的任何一个值,通过式子,在中都有唯一拟定的值和它相应,那么式子表达是的函数,函数叫做函数的反函数,记作,习惯上改写成(7)反函数的求法拟定反函数的定义域,即原函数的值域;从原函数式中反解出;将改写成,并注明反函数的定义域(8)反函数的性质 原函数与反函数的图象关于直线对称函数的定义域、值域分别是其反函数的值域、定义域若
14、在原函数的图象上,则在反函数的图象上一般地,函数要有反函数则它必须为单调函数2.3幂函数(1)幂函数的定义 一般地,函数叫做幂函数,其中为自变量,是常数(2)幂函数的图象(3)幂函数的性质图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限 过定点:所有的幂函数在都有定义,并且图象都通过点 单调性:假如,则幂函数的图象过原点,并且在上为增函数假如,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴奇偶性:当为奇数时,幂函数为奇
15、函数,当为偶数时,幂函数为偶函数当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数图象特性:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方补充知识二次函数(1)二次函数解析式的三种形式一般式:顶点式:两根式:(2)求二次函数解析式的方法已知三个点坐标时,宜用一般式已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便(3)二次函数图象的性质二次函数的图象是一条抛物线,对称轴方程为顶点坐标是当时
16、,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,二次函数当时,图象与轴有两个交点(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布 设一元二次方程的两实根为,且令,从以下四个方面来分析此类问题:开口方向: 对称轴位置: 判别式: 端点函数值符号 kx1x2 x1x2k x1kx2 af(k)0 k1x1x2k2 有且仅有一个根x1(或
17、x2)满足k1x1(或x2)k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合 k1x1k2p1x2p2 此结论可直接由推出 (5)二次函数在闭区间上的最值 设在区间上的最大值为,最小值为,令()当时(开口向上)若,则 若,则 若,则xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,则 ,则xy0aOabx2-=pqf(p)f(q)()当时(开口向下)若,则 若,则 若,则xy0aOabx2-=pqf(p)f(q)xy0aOabx2-
18、=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,则 ,则xy0aOabx2-=pqf(p)f(q)xy0 L AB公理1作用:判断直线是否在平面内CBA(2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表达为:A、B、C三点不共线 = 有且只有一个平面,使A、B、C。公理2作用:拟定一个平面的依据。(3)公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。PL符号表达为:P =L,且PL公理3作用:鉴定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:共面直线 相交直线:同一平面内,有且只
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 数学 知识点 总结
限制150内