2023年平面解析几何初步知识点例题.doc
《2023年平面解析几何初步知识点例题.doc》由会员分享,可在线阅读,更多相关《2023年平面解析几何初步知识点例题.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、海豚教育个性化简案学生姓名: 年级: 科目: 授课日期: 月 日上课时间: 时 分 - 时 分 合计: 小时教学目的1. 掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式;2. 可以根据直线的方程判断两条直线的位置关系;3. 掌握圆的标准方程和一般方程. 重难点导航1. 了解解析几何的基本思想;2. 了解用坐标法研究几何问题的方法. 教学简案:一、 真题演练二、 个性化教案三、 个性化作业四、错题汇编授课教师评价: 准时上课:无迟到和早退现象(今日学生课堂表 今天所学知识点所有掌握:教师任意抽查一知识点,学生能完全掌握现符合共 项) 上课态度认真:上课期间认真听讲,无任何
2、不配合老师的情况(大写) 海豚作业完毕达标:所有准时按量完毕所布置的作业,无少做漏做现象 审核人签字:学生签字:教师签字:备注:请交至行政前台处登记、存档保存,隔日无效 (可另附教案内页) 大写:壹 贰 叁 肆 签章:海豚教育个性化教案(真题演练)1. (2023年河南)已知m,n为异面直线,m平面,n平面直线l满足lm,ln,l,l,则()A且lB且lC与相交,且交线垂直于lD与相交,且交线平行于一、海豚教育个性化教案平面解析几何初步知识点一:直线与方程1. 直线的倾斜角:在平面直角坐标系中,对于一条与轴相交的直线,假如把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做直线的倾
3、斜角.倾斜角,斜率不存在.2. 直线的斜率:(、).3直线方程的五种形式【典型例题】例1:已知直线(2m2m3)x(m2m)y4m1 当m 时,直线的倾斜角为45当m 时,直线在x轴上的截距为1 当m 时,直线在y轴上的截距为 当m 时,直线与x轴平行当m 时,直线过原点【举一反三】1. 直线3yx2=0的倾斜角是 ( )A30 B60 C120 D1502. 设直线的斜率k=2,P1(3,5),P2(x2,7),P(1,y3)是直线上的三点,则x2,y3依次是 ( )A3,4 B2,3 C4,3 D4,33. 直线l1与l2关于x轴对称,l1的斜率是,则l2的斜率是 ( )A B C D4.
4、 直线l通过两点(1,2),(3,4),则该直线的方程是 例2:已知三点A(1,-1),B(3,3),C(4,5).求证:A、B、C三点在同一条直线上.练习:设a,b,c是互不相等的三个实数,假如A(a,a3)、B(b,b3)、C(c,c3)在同一直线上,求证:a+b+c=0.例3:已知实数x,y满足y=x2-2x+2 (-1x1).试求:的最大值与最小值.变式训练3. 若实数x,y满足等式(x-2)2+y2=3,那么的最大值为( )A. B.C. D.例4.:已知定点P(6, 4)与直线l1:y4x,过点P的直线l与l1交于第一象限的Q点,与x轴正半轴交于点M求使OQM面积最小的直线l的方程
5、练习:直线l过点M(2,1),且分别交x轴y轴的正半轴于点A、B,O为坐标原点(1)当AOB的面积最小时,求直线l的方程;(2)当取最小值时,求直线l的方程知识点二:直线与直线的位置关系一:两条直线的平行和垂直:(1)若, ; .(2)若,有 二:点到直线的距离、直线与直线的距离1. 点到直线的距离公式:点到直线的距离:2. 两平行直线间的距离:两条平行直线距离:三:两条直线的交角公式若直线l1的斜率为k1,l2的斜率为k2,则1 直线l1到l2的角满足2直线l1与l2所成的角(简称夹角)满足四:两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数五:五种常用的直线
6、系方程. 过两直线l1和l2交点的直线系方程为A1xB1yC1(A2xB2yC2)0(不含l2). 与直线ykxb平行的直线系方程为ykxm (mb). 过定点(x0, y0)的直线系方程为yy0k(xx0)及xx0. 与AxByC0平行的直线系方程设为AxBym0 (mC). 与AxByC0垂直的直线系方程设为BxAyC10 (AB0).【典型例题】例1:已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1l2时,求a的值.练习:若直线l1:ax+4y-20=0,l2:x+ay-b=0,当a、b满足什么条件时,直线l1与l2分
7、别相交?平行?垂直?重合?例2:已知直线l通过两条直线l1:x2y0与l2:3x4y100的交点,且与直线l3:5x2y30的夹角为,求直线l的方程练习:某人在一山坡P处观看对面山顶上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l,且点P在直线l上,l与水平地面的夹角为,tan=.试问,此人距水平地面多高时,观看塔的视角BPC最大(不计此人的身高)?例3:直线y2x是ABC中C的平分线所在的直线,若A、B坐标分别为A(4,2)、B(3,1),求点C的坐标并判断ABC的形状练习:三条直线l1:x+y+a=0,l2:x+a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 平面 解析几何 初步 知识点 例题
限制150内