2023年勾股定理知识点梳理.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023年勾股定理知识点梳理.doc》由会员分享,可在线阅读,更多相关《2023年勾股定理知识点梳理.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、勾股定理知识点梳理1.直角三角型有哪些特殊的性质;角,直角三角型的两锐角互余;边,直角三角形两直角边的平方和等于斜边的平方,用符号表达:在RtABC中,;面积,两种计算面积的方法。2.如何鉴定一个三角形是直角三角形呢?有一个内角为直角的三角形是直角三角形;两个内角互余的三角形是直角三角形;假如三角形的三边长为a、b、c满足,那么这个三角形是直角三角形3勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是鉴定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。4互逆命题的概念假如一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题
2、叫做互逆命题。假如把其中一个叫做原命题,那么另一个叫做它的逆命题。5.勾股数可以构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度,如;,8,15,17;9,40,41等6.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思绪是图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面积不同的表达方法,列出等式,推导出勾股定理常见方法如下:方法一:,化简可证方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三
3、:,化简得证一 典型例题类型一:勾股定理的直接用法 1、在RtABC中,C=90 (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思绪点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图B=ACD=90, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2、如图,已知:在中,. 求:BC的长. 思绪点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,再由勾股定理计算出AD、DC的长,进而求出BC的长. 举一反三【变式1】如图,已知:,于P
4、. 求证:. 【变式2】已知:如图,B=D=90,A=60,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60方向走了到达B点,然后再沿北偏西30方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)拟定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货品的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? 【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH如图
5、所示,点D在离厂门中线0.8米处,且CD, 与地面交于H (二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分请你帮助计算一下,哪种架设方案最省电线 思绪点拨:解答本题的思绪是:最省电线就是线路长最短,通过运用勾股定理计算线路长,然后进行比较,得出结论 举一反三 【变式】如图,一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程 解:
6、如图,在Rt中,底面周长的一半cm, 根据勾股定理得 (提问:勾股定理) AC (cm)(勾股定理) 答:最短路程约为cm类型四:运用勾股定理作长为的线段 5、作长为、的线段。 思绪点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。 举一反三 【变式】在数轴上表达的点。 解析:可以把看作是直角三角形的斜边, 为了有助于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得此外两边分别是3和1。 作法:如图所示在数轴上找到A点,使OA=3,作ACOA且截取AC=1,以OC为半径, 以O为圆心做弧,弧与数轴的交点B即为。类型
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 勾股定理 知识点 梳理
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内