2023年人教版七年级下数学知识点归纳总结.docx
《2023年人教版七年级下数学知识点归纳总结.docx》由会员分享,可在线阅读,更多相关《2023年人教版七年级下数学知识点归纳总结.docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五章 相交线与平行线平面内,点与直线之间的位置关系分为两种: 点在线上 点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种: 相交 平行一、相交线1、两条直线相交,有且只有一个交点。 (反之,若两条直线只有一个交点,则这两条直线相交。) 两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。 邻补角互补。 要注意区分互为邻补角与互为补角的异同。对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。 对顶角相等。注:、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。 反过来亦成立。、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲
2、清谁是谁的邻补角或对顶角。 例如:判断对错: 由于ABC +DBC = 180,所以DBC是邻补角。( ) 相等的两个角互为对顶角。( )2、垂直是两直线相交的特殊情况。 注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。垂足:两条互相垂直的直线的交点叫垂足。 垂直时,一定要用直角符号表达出来。过一点有且只有一条直线与已知直线垂直。(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫 垂线段。垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。垂线段最短:连接直线外一点与直线上各点的所有
3、线段中,垂线段最短。(或说 直角三角形中,斜边大于直角边。)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。 注:距离指的是垂线段的长度,而不是这条垂线段的自身。所以,假如在判断时,若没有“长度”两字,则是错误的。4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面提成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。 注意:要纯熟地结识并找出这三种角: 根据三种角的概念来区分 借助模型来区分,即:同位角F型,内错角Z型,同旁内角U型。特别注意: 三角形的三个内角均互为同旁内角; 同位角、内错角、同旁内角的称呼并不一定要
4、建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。5、几何计数: 平面内n条直线两两相交,共有n ( n 1) 组对顶角。(或写成 n2 n 组) 平面内n条直线两两相交,最多有n(n1)/2个交点。(或写成(n2n)/2个) 平面内n条直线两两相交,最多把平面分割成n(n+1)/2+1个面。 当平面内n个点中任意三点均不共线时,一共可以作n(n1)/2 条直线。回顾:、一条直线上n个点之间,一共有n(n1)/2 条线段;、若从一个点引出n条射线,则一共有n(n1)/2 个角。二、平行线同一平面内,两条直线若没有公共点(即交点),那
5、么这两条直线平行。 注:平行线永不相交。1、平行公理:过直线外一点,有且只有一条直线与已知直线平行。 (注:这一点是在直线外)推论:假如两条直线都与第三条直线平行,那么这两条直线也互相平行。 (或叫平行线的传递性)2、平行线的画法:借助三角板和直尺。具体略。(此基本作图方法一定要掌握,多练习。)3、平行线的鉴定: 同位角相等,两直线平行; 内错角相等,两直线平行; 同旁内角互补,两直线平行。注意:是先看角如何,再判断两直线是否平行,前提是“角相等/ 互补”。一个重要结论:同一平面内,垂直于同一直线的两条直线互相平行。4、平行线的性质: 两直线平行,同位角相等; 两直线平行,内错角相等; 两直线
6、平行,同旁内角互补。注意:是先有两直线平行,才有以上的性质,前提是“线平行”。 一个结论:平行线间的距离处处相等。 例如:应用于 说明矩形(涉及长方形、正方形)的对边相等,尚有梯形的对角线把梯形提成分别以上底为底的两等面积的三角形,或 以下底为底的两等面积的三角形。(由于梯形的上底与下底平行,平行线间的高相等,所以,就有等底等高的三角形。) 此章难度最大就在如何运用平行线的鉴定或性质来进行解析几何的初步推理,要在纯熟掌握好基本知识点的基础上,学会逻辑推理,既要条理清楚,又要简洁明了。5、命题判断一件事情的语句叫命题。命题涉及“题设”和“结论”两部分,可写成“假如那么”的形式。例如:“明天也许下
7、雨。”这句语句_命题,而“今天很热,明天也许下雨。”这句语句_命题。(填“是”或“不是”) 命题分为真命题 与 假命题,真命题指题设成立,结论也成立的命题(或说对的的命题)。假命题指题设成立,但结论不一定或主线不成立的命题(或说错误的命题)。 逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。例如:“对顶角相等”是个真命题,但其逆命题“_”却是个假命题。不管是真命题还是假命题,都要学会能非常纯熟地把一个命题写成“假如那么”的形式。例:把“等角的补角相等”写成“假如 那么”的
8、形式为:_。再例:把“三角形的内角和等于180度。”写成包含题设与结论的形式:_。三、平移1、 概念:把图形的整体沿着某一方向移动一定的距离,得到一个新的图形,这种图形的移动,叫平移。 拟定平移,关键是要弄清平移的方向(并不一定是水平移动或垂直移动哦)与平移的距离。假如是斜着平移的,则需把由起始位置至最终位置拆分为先水平移动,再上下移动,或拆分为先上下移动,再水平移动。当然,假如是在格点图内平移,则可运用已知点的平移距离是某一矩形的对角线这一特点来相应完毕其它顶点的平移。2、 特性: 发生平移时,新图形与原图形的形状、大小完全相同(即:相应线段、相应角均相等); 相应点之间的线段互相平行(或在
9、同一直线上)且相等,均等于平移距离。3、画法:掌握平移方向与平移距离,运用相应点(一般指图形的顶点)之间连线段平行、连线段相等性质描出原图形顶点的相应点,再依次连接,就形成平移后的新图形。第六章 平面直角坐标系 一、坐标1、数轴 规定了原点、正方向、单位长度的直线叫数轴。 数轴上的点可以用一个数来表达,这个数叫这个点在数轴上的坐标。 数轴上的点与实数(涉及有理数与无理数)一一相应,数轴上的每一个点都有唯一的一个数与之相应。2、平面直角坐标系 由互相垂直、且原点重合的两条数轴组成。 横向(水平)方向的为横轴(x轴),纵向(竖直)方向的为纵轴(y轴), 平面直角坐标系上的任一点,都可用一对有序实数
10、对来表达位置,这对有序实数对就叫这点的坐标。(即是用有顺序的两个数来表达,注:x在前,y在后,不能随意更改) 坐标平面内的点与有序实数对是一一相应的,每一个点,都有唯一的一对有序实数对与之相应。二、象限及坐标平面内点的特点 1、四个象限 平面直角坐标系把坐标平面提成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第象限)、第二象限(或第象限)、第三象限(第象限)和第四象限(或第象限)。 注:、坐标轴(x轴、y轴)上的点不属于任何一个象限。例 点A(3,0)和点B(0,-5) 、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。2、坐
11、标平面内点的位置特点 、坐标原点的坐标为(0,0);、第一象限内的点,x、y同号,均为正; 、第二象限内的点,x、y异号,x为负,y为正;、第三象限内的点,x、y同号,均为负; 、第四象限内的点,x、y异号,x为正,y为负;、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0 (表达一条直线)、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表达一条直线)例:若P(x,y),已知xy0,则P点在第_象限,已知xyc ,或a+cb ,或b+ca )2、推论:三角形的任意两边之差小于第三边。特别注意:(1)、以上两点就是判断任意给定的三条线段能否组
12、成三角形的条件,但在实际做题时,并不需要去分析所有三组边的大小关系,可简化为:当三条线段中最长的线段小于另两条较短线段之和时,或 当三条线段中最短的线段大于另两条较长线段之差的绝对值时,即可组成三角形。(2)、已知三角形的两边a,b(ab),则第三边c的取值范围为:ab c 0) 、a + 3 ,a + 4 ,a + 7 (a0) 、3a , 4a , 2a + 1 (a1/5) 例:已知M是ABC内一点,试说明:AB + AC MB + MC (图自画)四、有关三角形边长的综合问题1、等腰三角形:等腰三角形有两相等的腰和一底边,题目中往往并不直接说明腰和底边,因此,解题时要分类讨论,以免丢解
13、。例:等腰三角形的周长为24cm,其中两条边长的比为 3 :2,求该等腰三角形的三边长。例:已知等腰三角形的周长是16cm,(1)若其中一边长为6cm,求此外两边长; (2)若其中一边长为4cm,求此外两边长。例:在等腰ABC中,AB=AC,一腰上的中线BD将三角形周长分为21和12两部分,求这个三角形的腰长和底边长。注:根据三角形三边关系,若等腰三角形的腰长为a,则底边长x 的取值范围是:0 x a/22、其它例:已知ABC和三角形内的一点P,试说明:AB + AC PB + PC (图略)五、三角形的中线、角平分线和高(图表区别) 名称 中线 角平分线 高三角形一个角的平分线与对边相交,顶
14、点与交点的连线段三角形一边上的中点与这边所对的顶点的连线段从三角形的顶点向对边或对边的延长线作垂线,垂足与顶点的连线段 定义形状 线段 线段 线段数量 3条 3条 3条锐角三角形的高均在三角形内;直角三角形斜边上的高在三角形内,另两条高与两条直角边重合;钝角三角形最长边上的高在三角形内,另两条高在三角形外。位置 三角形内部 三角形内部交于同一点,位于三角形内,叫三角形的内心交于同一点,位于三角形内,叫三角形的重心交于同一点,叫三角形的垂心:锐角三角形高的交点位于三角形内部;直角三角形高的交点与直角顶点重合;钝角三角形高的交点在三角形的外部。交点情况例:判断对错:(1)三角形的三条高在三角形的内
15、部。( )(2)以三角形的顶点为端点,且平分三角形内角的射线叫做三角形的角平分线。( )(3)三角形的中线将三角形分为面积相等的两个三角形。( )(4)三角形的三条角平分线和三条中线在三角形内部或外部。( )注:1、画任意一个三角形的三条高,对于初学者来讲,有时会不太纯熟,记住,要掌握好三角形的高的定义及位置情况,根据定义对的画出三角形的高,口诀:“一靠二过三画线”;2、要区分角的平分线和三角形角的平分线,前者是射线,后者是线段; 3、三角形的一条中线把三角形的面积一分为二(由于“等底等高的三角形面积相等”),三角形的任意一条边与该边上的高的乘积的一半都等于这个三角形的面积,所以,有时,题目中
16、出现了中线,或出现了高时,一定要有从面积入手来解题的意识。 4、三角形的三条中线相交于一点(这点叫三角形的重心),且把原三角形提成面积相等的六个部分(即六个小三角形)。六、三角形的稳定性三角形的三条边固定,那么三角形的形状和大小就完全拟定了,这个性质叫三角形的稳定性。除了三角形外,其它的多边形不具有稳定性,但可以通过连接对角线,把多边形转化为若干个三角形,这个多边形也就具有稳定性了。多边形要具有稳定性,四边形要添一条对角线,五边形要添二条对角线 , n边形要添(n-3)条对角线。七、三角形的内角和定理三角形的内角和等于180度。 要会运用平行线性质、邻补角、平角等相关知识推出三角形内角和定理。
17、注:、已知三角形的两个内角度数,可求出第三个角的度数; 、等边三角形的每一个内角都等于60度;、假如已知等腰三角形的一个内角等于60度,那么这个等腰三角形就是等边三角形。 、三角形中,有“大角对大边,大边对大角”性质,即度数较大的角,所对的边就较长,或较长的边,所对的角的度数较大。例:(1)已知等腰三角形的一个内角等于70度,则此外两个内角的度数分别是多少度? (2)等腰三角形的一个外角是100,求这个三角形的三个内角度数。八、三角形的外角及其性质三角形的每一个内角都有相邻的两个外角,且这两个外角相等(对顶角相等)。一共有六个外角。其中,从与三角形的每一个内角相邻的两个外角中各取一个外角相加(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版七 年级 数学 知识点 归纳 总结
限制150内