黄山硅基负极材料项目招商引资方案.docx
《黄山硅基负极材料项目招商引资方案.docx》由会员分享,可在线阅读,更多相关《黄山硅基负极材料项目招商引资方案.docx(126页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域咨询/黄山硅基负极材料项目招商引资方案目录第一章 行业发展分析8一、 负极材料新一轮技术迭代,硅基负极带来新优势8二、 高能量密度电池需求放量,硅基负极需求有望放量10三、 硅碳和硅氧为主要路线,技术革新在即11第二章 项目背景分析14一、 市场空间:预计2025年全球硅基负极出货量有望达到14.9万吨14二、 产业化布局逐步推进,技术更新突破壁垒14三、 行业壁垒明显,技术迭代推进降本与增效16四、 突出创新驱动,在建设创新型黄山上取得更大突破17第三章 项目概况21一、 项目名称及投资人21二、 编制原则21三、 编制依据21四、 编制范围及内容22五、 项目建设背景22六、 结论分析
2、22主要经济指标一览表24第四章 产品规划与建设内容27一、 建设规模及主要建设内容27二、 产品规划方案及生产纲领27产品规划方案一览表27第五章 选址方案分析29一、 项目选址原则29二、 建设区基本情况29三、 全面提升中心城区首位度31四、 进一步扩大有效投入32五、 项目选址综合评价33第六章 运营模式35一、 公司经营宗旨35二、 公司的目标、主要职责35三、 各部门职责及权限36四、 财务会计制度39第七章 发展规划分析45一、 公司发展规划45二、 保障措施49第八章 法人治理结构52一、 股东权利及义务52二、 董事57三、 高级管理人员61四、 监事64第九章 工艺技术及设
3、备选型66一、 企业技术研发分析66二、 项目技术工艺分析68三、 质量管理69四、 设备选型方案70主要设备购置一览表71第十章 项目实施进度计划72一、 项目进度安排72项目实施进度计划一览表72二、 项目实施保障措施73第十一章 原辅材料分析74一、 项目建设期原辅材料供应情况74二、 项目运营期原辅材料供应及质量管理74第十二章 节能可行性分析76一、 项目节能概述76二、 能源消费种类和数量分析77能耗分析一览表78三、 项目节能措施78四、 节能综合评价79第十三章 投资计划方案81一、 投资估算的依据和说明81二、 建设投资估算82建设投资估算表86三、 建设期利息86建设期利息
4、估算表86固定资产投资估算表88四、 流动资金88流动资金估算表89五、 项目总投资90总投资及构成一览表90六、 资金筹措与投资计划91项目投资计划与资金筹措一览表91第十四章 经济效益评价93一、 基本假设及基础参数选取93二、 经济评价财务测算93营业收入、税金及附加和增值税估算表93综合总成本费用估算表95利润及利润分配表97三、 项目盈利能力分析98项目投资现金流量表99四、 财务生存能力分析101五、 偿债能力分析101借款还本付息计划表102六、 经济评价结论103第十五章 招投标方案104一、 项目招标依据104二、 项目招标范围104三、 招标要求105四、 招标组织方式10
5、7五、 招标信息发布107第十六章 总结说明109第十七章 补充表格110主要经济指标一览表110建设投资估算表111建设期利息估算表112固定资产投资估算表113流动资金估算表114总投资及构成一览表115项目投资计划与资金筹措一览表116营业收入、税金及附加和增值税估算表117综合总成本费用估算表117固定资产折旧费估算表118无形资产和其他资产摊销估算表119利润及利润分配表120项目投资现金流量表121借款还本付息计划表122建筑工程投资一览表123项目实施进度计划一览表124主要设备购置一览表125能耗分析一览表125报告说明终端客户续航需求提升,高能量密度电池成为行业趋势。我国锂电
6、池行业已步入成长期,新能源汽车、消费电子等终端市场中,客户对续航时间、续航里程和轻量化提出更高要求。相比于石墨负极嵌入式储锂而言,硅基负极材料的合金化储锂机制可以储存更多的锂离子,从而赋予硅更高的理论比容量(4200mAh/g),电池能量密度相对较高,从而有效提升续航时间及里程。中国制造2025明确了2025年电池能量密度达到400Wh/kg,2030年电池能量密度达到500Wh/kg的远景目标,硅基负极未来有望在电池能量密度较高的三元电池体系中迎来渗透率的提高。根据谨慎财务估算,项目总投资14244.84万元,其中:建设投资11318.80万元,占项目总投资的79.46%;建设期利息130.
7、69万元,占项目总投资的0.92%;流动资金2795.35万元,占项目总投资的19.62%。项目正常运营每年营业收入29600.00万元,综合总成本费用24517.88万元,净利润3714.24万元,财务内部收益率20.10%,财务净现值6683.07万元,全部投资回收期5.68年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。该项目的建设符合国家产业政策;同时项目的技术含量较高,其建设是必要的;该项目市场前景较好;该项目外部配套条件齐备,可以满足生产要求;财务分析表明,该项目具有一定盈利能力。综上,该项目建设条件具备,经济效益较好,其建设是可行的。本报告基于可信的公开资料
8、,参考行业研究模型,旨在对项目进行合理的逻辑分析研究。本报告仅作为投资参考或作为参考范文模板用途。第一章 行业发展分析一、 负极材料新一轮技术迭代,硅基负极带来新优势锂电池负极材料对于锂离子电池起关键作用。在充电过程负极材料中不断地与锂离子发生反应,将锂离子“擒获并存储”起来,亦将外部的功以能量的形式存储在电池中。在电池的放电过程中,锂离子从负极转移到正极,电池对外做功。因此,锂离子与负极材料的可逆反应能力决定着锂离子电池的储能效应,锂离子电池性能的提高在一定程度上取决于对负极材料性能的改善。锂电池负极材料主要分为碳类材料和非碳材料。碳类材料包括天然石墨负极、人造石墨负极、软炭(如焦炭)负极、
9、硬炭负极、碳纳米管、石墨烯、碳纤维等,非碳基材料主要分为硅基及其复合材料、锡基材料、钛酸锂、合金材料等。硅负极理论比容量优势明显。目前广泛使用负极材料是石墨材料,但商业化的石墨负极容量发挥已接近其理论比容量(372mAh/g),限制其进一步的应用,因此迫切需要开发出具有更高比容量的负极材料。而硅负极具有很高的理论比容量(4200mAh/g)和较低的电化学嵌锂电位,快充性能优异,这正是便携式电子产品、无人机、新能源汽车和储能电池系统等一系列新技术领域发展的迫切需要。硅负极在充放电过程中存在巨大体积膨胀。硅负极在循环过程中的体积膨胀较大,会导致较差的循环寿命和不可逆容量,严重阻碍了其商业化应用。体
10、积膨胀效应引起纳米硅颗粒与电极极片的机械稳定性变差、活性颗粒之间相互的接触不好、以及表面SEI钝化膜的稳定性降低,使得锂电池的寿命和安全性能都面临着挑战。硅负极的首次充电效率较低。在锂离子电池首次充电过程中,有机电解液会在负极表面还原分解,形成固体电解质相界面(SEI)膜,不可逆地消耗大量来自正极的锂离子,造成首次循环的库仑效率偏低,降低了锂离子电池的容量和能量密度。现有的石墨材料有5%10%的首次不可逆锂损耗,由于硅材料的表面积高于石墨,首次不可逆锂损耗达15%35%。硅负极与碳复合材料优势互补,体积膨胀改善明显。碳负极材料具有良好的循环稳定性能和优异的导电性,且锂离子对其层间距并无明显影响
11、,在一定程度上可以缓冲和适应硅的体积膨胀;此外,硅与碳化学性质相近,二者结合紧密,因此碳常用作与硅复合的首选基质。在硅碳复合体系中,硅颗粒作为活性物质,提供储锂容量;碳既能缓冲充放电过程中硅负极的体积变化,又能改善硅系材料的导电性,还能避免硅碳颗粒在充放电循环中发生团聚。因此硅碳复合材料综合吸收了二者特有的优点,在锂电池上表现出高质量比容量和长循环寿命,代替石墨成为新一代锂离子电池负极材料。二、 高能量密度电池需求放量,硅基负极需求有望放量终端客户续航需求提升,高能量密度电池成为行业趋势。我国锂电池行业已步入成长期,新能源汽车、消费电子等终端市场中,客户对续航时间、续航里程和轻量化提出更高要求
12、。相比于石墨负极嵌入式储锂而言,硅基负极材料的合金化储锂机制可以储存更多的锂离子,从而赋予硅更高的理论比容量(4200mAh/g),电池能量密度相对较高,从而有效提升续航时间及里程。中国制造2025明确了2025年电池能量密度达到400Wh/kg,2030年电池能量密度达到500Wh/kg的远景目标,硅基负极未来有望在电池能量密度较高的三元电池体系中迎来渗透率的提高。特斯拉4680电池已实现量产,高能量密度电池成为未来关键赛点。在特斯拉和头部电池厂的推动下,预计4680电池将迎来需求拐点,带动主辅材向高能量高倍率方向加速升级,而无论从适配程度、能量密度提升角度而言,“高镍+高硅”将是最适合搭配
13、4680电池的方案。随着主流电池厂纷纷跟进量产,4680电池的放量将有效带动相关行业进入快车道。众多厂商跟进,大圆柱电池将成为硅基负极增长催化剂。海外方面,除特斯拉在美国德州、德国的超级工厂外,松下、LG化学均在推动4680大圆柱电池配套设施建设;国内方面,宁德时代正加快研发节奏,规划了8条4680电池产线,共12GWh;比克动力于2019年开始研发大圆柱电池,预计2023年量产;亿纬锂能具备4680的技术储备,并在2021年11月公告称,将在荆门投建20GWh乘用车用大圆柱电池生产线。预计受特斯拉引领,国内企业将跟进布局4680电池,带动圆柱电池渗透率将进一步提升。近年负极出货量快速增长,渗
14、透率稳中有升,未来发展空间巨大。随着下游动力电池行业对高能量密度负极材料需求的增长,硅基负极材料出货量快速增长。2016年我国硅基负极材料出货量仅为0.06万吨,2021年出货量激增,达1.1万吨,同比上升89.7%。同时,国内硅基渗透率仍然较低。据统计,2021年中国硅基负极材料在负极渗透率仅为1.4%,提升空间巨大。预计随着未来大圆柱电池市场的放量,硅基负极市场将迎来快速增长。三、 硅碳和硅氧为主要路线,技术革新在即硅碳复合材料与硅氧复合材料是硅基负极的主要技术路线。目前,硅基材料的主要发展方向是硅碳复合材料与硅氧复合材料。硅碳复合材料是指纳米硅与石墨材料混合,硅氧复合则是通过在高温下气象
15、沉淀硅与二氧化硅(SiO2),使硅纳米颗粒(25nm)均匀分散在二氧化硅介质中制得氧化亚硅(SiO),再与碳复合制成。氧化硅材料既能发挥硅的高容量优势,又能够抑制硅的体积变化。硅氧负极的综合性能较好,是下一代高比能硅基负极材料的选择。在硅氧负极中的Li+在SiO中具有更高的扩散速度,表现出更好的倍率性能;同时,嵌锂过程中体积膨胀也显著小于硅碳负极,循环寿命更长。近年来,硅氧负极的首次效率经过材料厂家的努力已经提升显著,其更优的综合性能为未来硅基负极的发展指明方向。制备方法:机械球磨法较先应用,但尚未形成标准化方法。硅基负极生产技术可分成机械球磨法、化学气相沉积法、高温热解法、溶胶凝胶法,其中机
16、械球磨法对设备要求较为简单,制造成本较低,在工业化量产中应用较广。球磨可以促进原料颗粒之间的均匀混合并获得较小的粒径,同时颗粒之间空隙也有利于电池的循环性能的提高。硅基负极的制备过程前端工序各不相同。目前硅碳负极生产工艺中,碳材料复合和烧结等步骤技术已较为成熟。由于纳米硅具有较高的表面能,极易团聚形成微米级颗粒,故硅碳负极生产的核心难点在于纳米硅粉的制备。硅氧负极的制备过程相对复杂,通常是先利用二氧化硅和单质硅作为原料制备氧化亚硅,然后进行碳包覆等后续工艺。硅碳负极与硅氧负极制备的后端工序基本相同,包括前驱体的表面处理、筛分、除磁等环节,最终经过分装得到成品。第二章 项目背景分析一、 市场空间
17、:预计2025年全球硅基负极出货量有望达到14.9万吨预计2025年全球硅基负极出货量有望达到14.9万吨,渗透率将达到5.4%。目前锂电池主要应用于动力电池,消费电池与储能电池。以动力电池为例,测算圆柱电池及非圆柱电池的不同硅基需求,考虑到不同应用领域下硅基负极不同使用比例,再结合石墨负极与硅基负极的每GWh电池对应单耗,预计全球硅基负极的出货量将以每年60%以上的增速增长。预计硅基负极在将率先在高端车型上展现锋芒,并随着各大电池厂对大圆柱电池的产业布局迅速发展。届时,硅基负极渗透率快速提升,行业规模快速扩大。二、 产业化布局逐步推进,技术更新突破壁垒硅碳负极产业化难点:体积膨胀降低寿命与低
18、首次充电效率。硅材料在嵌锂过程中巨大的体积膨胀诱导极大的内应力产生,内应力的释放会导致硅颗粒破裂甚至粉化,破碎的硅颗粒与电极失去电接触,还会导致电极结构破坏,部分电极与极片失去电接触,导致电池容量衰减。此外,硅颗粒在脱嵌锂过程中剧烈的体积膨胀所形成的外应力不断使硅颗粒表面形成的SEI膜破裂,硅颗粒表面与电解液重新接触导致SEI膜反复再生,导致电池中有限的活性锂损失,进而降低使用寿命。而锂离子电池首次充放电过程中,SEI膜的形成会永久地消耗来自正极的锂,造成首次库伦效率(首次充电效率)和能量密度偏低。其次,硅的导电性能相较碳材料来说较差,在高倍率下不利于电池容量的有效释放。负极预锂化能大幅度提高
19、锂离子电池的首次库伦效率、弥补不可逆容量损失。对于硅基负极首效较低的问题,主要是因为硅材料比表面积较大,导致电极在首次嵌锂的过程中产生大面积SEI膜,从而消耗电池中的锂离子。使用预锂化技术在电极正式充放电循环之前添加少量锂源,可以弥补反应中过量消耗的锂,补充SEI膜形成过程中的副反应和阴极锂的消耗,在一定程度上减轻了体积膨胀,提高了锂离子电池的整体性能。负极预锂化工艺难度高,规模化有望降本。预锂化有正极补锂与负极补锂两种方法。负极补锂的方式主要包括金属锂粉、锂合金化合物、化学和电化学补锂等,正极补锂的方式主要包括富锂添加剂、二元锂化合物、逆转化反应的纳米复合材料补锂等。现阶段,由于金属锂的使用
20、与生产环境、常规溶剂、粘结剂及热处理等过程不兼容,相比于正极补锂,负极补锂由于成本与工艺原因,难度相对较高,预计随着硅基负极的需求提升,相关成本将会下降。三、 行业壁垒明显,技术迭代推进降本与增效材料性能:硅基负极材料的性能还有待提高。硅碳复合负极的首效可以达到86-91,已接近石墨产品,但其长循环后的容量保持率离石墨负极还有较大的差距。氧化亚硅负极材料的循环性能较好,但其偏低的首次效率将制约其应用。解决这些问题不仅需要优化材料的制备工艺,还需要从整个电池的工艺去着手解决。材料成本:硅基负极材料的成本还有待降低。硅基负极相对于石墨负极材料的制备工艺复杂,且各家工艺均不同,产品目前未达到标准化,
21、导致其价格一直居高不下。硅基负极材料的制备过程中纳米硅粉生产对设备的要求极高,需要较大的资金投入且生产过程中能耗较大。硅氧负极制备的难点在于氧化亚硅的制备,原因在于其表面结构难以控制,并对其性能有着关键影响,且生产效率低;其次为提高硅氧负极的首次库伦效率,常需要预锂化工艺,这无疑会增加产品的制备成本,抬高硅基负极价格。生产工艺:硅基材料的电池工艺还有待成熟。电池的制备流程以及匹配的主、辅材对硅基材料的性能发挥影响很大。近年来,虽然部分电池企业在硅基材料的应用中取得了一定的技术突破,但整体而言其技术工艺还不够成熟。硅基电解液的开发、预锂化技术的应用、粘结剂的选择等工作都需要电池和负极材料厂商共同
22、开展,以加快硅基负极材料的产业化应用。领先公司技术储备优势明显,产品性能优秀。目前,贝特瑞及杉杉股份拥有较多的专利数目,科研技术处在领先水平,贝特瑞公司拥有60余项硅基负极材料专利,处于国内行业领先,掌握的“高能量密度富锂氧化物硅碳技术”、“氧化亚硅表面改性技术”、“高容量硅碳产品开发技术”、“高首效氧化亚硅技术”行业领先,杉杉股份的硅基负极以氧化亚硅为主,目前该产品已在消费类和小动力市场实现批量应用,公司亦在推进纳米硅的研发,以实现高能密度电池的动力需求。硅基负极投资成本较高,规模化有望降本。贝特瑞的单万吨资产投资高达12.5亿元,而非负极企业如石大胜华、硅宝科技的单万吨资产投资在3-4亿元
23、左右。原因在于贝特瑞采用硅基负极一体化生产,自己处理硅原料。相信随着制造工艺的成熟和技术的革新,以及硅基材料市场需求的不断扩大,规模化生产后硅基材料的加工成本必将逐渐下行。四、 突出创新驱动,在建设创新型黄山上取得更大突破坚持创新在现代化建设全局中的核心地位,落实科技强国行动纲要,深入实施科教兴市、人才强市、创新驱动发展战略,强化“科创+”,到“十四五”末高新技术产业增加值明显提升,全社会研发投入占GDP比重超过2%,塑造更多依靠创新驱动的引领型发展。(一)全面提升创新能力拓展思路下好创新先手棋,积极融入全面创新改革试验省建设,扎实推进创新型城市建设。加强应用研究和集成创新,实施科技创新能力提
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 黄山 负极 材料 项目 招商引资 方案
限制150内