1.2 空间向量基本定理(导学案)-人教A版高中数学选择性必修第一册.docx
《1.2 空间向量基本定理(导学案)-人教A版高中数学选择性必修第一册.docx》由会员分享,可在线阅读,更多相关《1.2 空间向量基本定理(导学案)-人教A版高中数学选择性必修第一册.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.2 空间向量基本定理1.掌握空间向量基本定理.2.了解空间向量正交分解的含义.3.会用空间向量基本定理解决有关问题.重点:掌握空间向量基本定理难点:用空间向量基本定理解决有关问题.一、温故知新1 平面向量基本定理及其证明,其证明过程为:来源:Z.xx.k.Com平移:将平移成同一始点的向量平行投影:过平移后所得向量的终点分别作平移后所在直线的平行线与这两条直线分别相交,得在方向上的分向量依据共线向量定理,分别用表示在方向上的分向量求分向量的和,代入,定理得证平面向量基本定理表明,平面内任一向量可以用该平面内两个不共线向量来线性表示一、情境导学我们所在的教室即是一个三维立体图,如果以教室的一
2、个墙角为始点,沿着三条墙缝作向量可以得到三个空间向量.这三个空间向量是不共面的,那么用这三个向量表示空间中任意的向量呢?二、探究新知知道平面内的任意一个向量都可以用两个不共线的向量来表示(平面向量基本定理),类似的任意一个空间的向量,能否用任意三个不共面的向量来表示呢? 因此,如果i,j,k是空间三个两两垂直的向量,那么对于任意一个空间向量p存在唯一有序实数组(x,y,z),使得p= xi+ yj+zk。我们称 xi, yj,zk分别为向量p在i,j,k上的分向量。探究 如图1.2-1, 设i,j,k是空间中三个两两垂直的向量,且表示他们的有向线段有公共起点o,对于任意一个空间向量p=OP,设
3、OQ为OP在i,j所确定的平面上的投影向量,则OP=OQ+QP,又向量QP,k共线,因此存在唯一实数z,使得QP+zk,从而OP=OQ+ zk,而在i,j所确定的平面上,由平面向量基本定理可知,存在唯一的有序实数对(x,y),使得OQ=xi+ yj.从而,OP=OQ+ zk= xi+ yj+zk. 空间向量基本定理1.定理:如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=xa+yb+zc.2.基底:我们把定理中的a,b,c叫做空间的一个基底,a,b,c都叫做基向量.空间任意三个不共面的向量都可以构成空间的一个基底.3.单位正交基底:如果空间的
4、一个基底中的三个基向量两两垂直,且长度都为1,那么这个基底叫做单位正交基底,常用i,j,k表示.由空间向量基本定理可知,对空间中的任意向量a,均可以分解为三个向量xi,yj,zk,使a=xi+yj+zk,像这样,把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.定理辨析1.空间任意三个不共面的向量都可构成空间的一个基底.基底选定后,空间的所有向量均可由基底唯一表示;不同基底下,同一向量的表达式也有可能不同.2.一个基底是一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.3.由于零向量与任意一个非零向量共线,与任意两个不共线的非零向量共面,所以若三个向量不共
5、面,就说明它们都不是零向量.做一做1.判断下列说法是否正确,正确的在后面的括号内打“”,错误的打“”.(1)空间向量的基底是唯一的.()(2)若a,b,c是空间向量的一个基底,则a,b,c均为非零向量.()(3)已知A,B,M,N是空间四点,若BA, BM, BN 不能构成空间的一个基底,则A,B,M,N共面.()(4)若a,b,c是空间的一个基底,且存在实数x,y,z使得xa+yb+zc=0,则有x=y=z=0.()2.设x=a+b,y=b+c,z=c+a,且a,b,c是空间的一个基底,给出下列向量组:a,b,x,x,y,z,b,c,z,x,y,a+b+c.其中可以作为空间一个基底的向量组有
6、()A.1个 B.2个 C.3个 D.4个3.已知e1,e2,e3是空间的一个基底,且OA=e1+2e2-e3,OB=-3e1+e2+2e3,OC=e1+e2-e3,试判断OA,OB,OC能否作为空间的一个基底.解:设OA=xOB+yOC,则e1+2e2-e3=x(-3e1+e2+2e3)+y(e1+e2-e3),即e1+2e2-e3=(y-3x)e1+(x+y)e2+(2x-y)e3,y-3x=1,x+y=2,2x-y=-1,此方程组无解.即不存在实数x,y,使得OA=xOB+yOC,所以OA,OB,OC不共面.所以OA,OB,OC能作为空间的一个基底.典例解析例1.如图,M、N分别是四面体
7、OABC的棱OA、BC的中点,P、Q是MN的三等分点(1)用向量,表示和(2)若四面体OABC的所有棱长都等于1,求的值跟踪训练1.如图所示,在平行六面体ABCD-ABCD中,a,b,c,P是CA的中点,M是CD的中点,N是CD的中点,点Q在CA上,且CQQA41,用基底a,b,c表示以下向量.(1);(2);(3);(4). 反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.2 空间向量基本定理导学案-人教A版高中数学选择性必修第一册 空间 向量 基本 定理 导学案 人教 高中数学 选择性 必修 一册
限制150内