3.2.2 双曲线的简单几何性质(1) 导学案-人教A版高中数学选择性必修第一册.docx
《3.2.2 双曲线的简单几何性质(1) 导学案-人教A版高中数学选择性必修第一册.docx》由会员分享,可在线阅读,更多相关《3.2.2 双曲线的简单几何性质(1) 导学案-人教A版高中数学选择性必修第一册.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.2.2双曲线的简单几何性质 (1) 导学案 1.掌握双曲线的简单几何性质2.理解双曲线的渐近线及离心率的意义3.根据几何条件求双曲线的标准方程.重点:运用双曲线的方程获得几何性质 难点:双曲线的渐近线及离心率的意义双曲线的几何性质 标准方程图形标准方程性质范围x-a或xa yRy-a或ya xR对称性对称轴:x轴、y轴;对称中心:坐标原点顶点坐标A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;半实轴长:a,半虚轴长:b渐近线 y=bax y=abx离心率a,b,c间的关系 c2=a2+b2(ca0,cb0)(1)
2、双曲线与椭圆的六个不同点: 双曲线椭圆曲线两支曲线封闭的曲线顶点两个顶点四个顶点轴实、虚轴长、短轴渐近线有渐近线无渐近线离心率e10e0,b0)的形状相同. ()(2)双曲线x2a2-y2b2=1与y2a2-x2b2=1(a0,b0)的渐近线相同. ()(3)等轴双曲线的渐近线互相垂直. ()2.圆锥曲线x2m+8+y29=1的离心率e=2,则实数m的值为()A.-5B.-35 C.19 D.-11一、 问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x2a2-y2b2=1 (a0,b0),的哪些几何性质,如何研究这些性质?1、范围利用双曲线的方程求出它的范围,由方程x2a2-y2b2=1
3、可得x2a2=1+y2b21 于是,双曲线上点的坐标( x, y)都适合不等式,x2a21,yR所以xa 或x-a; yR2、对称性 x2a2-y2b2=1 (a0,b0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A1-a,0、A2 a,0,只有两个。(2)如图,线段A1A2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B1B2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x2a2-y2b2=1 (
4、a0,b0),的渐近线方程为:y=bax(2)利用渐近线可以较准确的画出双曲线的草图4、渐近线慢慢靠近5、离心率(1)定义:e = ca(2)e的范围:e 1(3)e的含义:因为ca0,所以可以看出e1,另外,注意到ba=c2-a2a=c2-a2a2=e2-1;说明越趋近于1,则的值越小,因此双曲线的渐近线所夹得双曲线区域越狭窄.如果双曲线C的标准方程是y2a2-x2b2=1 (a0,b0),那么该双曲线的范围、对称性、顶点、渐近线、离心率中,那些与焦点在x轴上的双曲线是有区别的?二、 典例解析例1 求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率、渐近线方程.由双曲
5、线的方程研究其几何性质的注意点(1)把双曲线方程化为标准形式是解决此类题的关键.(2)由标准方程确定焦点位置,确定a,b的值.(3)由c2=a2+b2求出c的值,从而写出双曲线的几何性质.跟踪训练1 求双曲线nx2-my2=mn(m0,n0)的半实轴长、半虚轴长、焦点坐标、离心率、顶点坐标和渐近线方程.例2 根据以下条件,求双曲线的标准方程.(1)过点P(3,-5),离心率为2;(2)与椭圆x29+y24=1有公共焦点,且离心率e=52;(3)与双曲线x29-y216=1有共同渐近线,且过点(-3,23).2.巧设双曲线方程的六种方法与技巧(1)焦点在x轴上的双曲线的标准方程可设为x2a2-y
6、2b2=1(a0,b0).(2)焦点在y轴上的双曲线的标准方程可设为y2a2-x2b2=1(a0,b0).(3)与双曲线x2a2-y2b2=1共焦点的双曲线方程可设为x2a2-y2b2+=1(0,-b2a2).(4)与双曲线x2a2-y2b2=1具有相同渐近线的双曲线方程可设为x2a2-y2b2=(0).(5)渐近线为y=kx的双曲线方程可设为k2x2-y2=(0).(6)渐近线为axby=0的双曲线方程可设为a2x2-b2y2=(0).跟踪训练2 求适合下列条件的双曲线的标准方程. (1)焦点在x轴上,虚轴长为8,离心率为53;(2)过点(2,0),与双曲线y264-x216=1离心率相等.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.2.2 双曲线的简单几何性质1 导学案-人教A版高中数学选择性必修第一册 3.2 双曲线 简单 几何 性质 导学案 人教 高中数学 选择性 必修 一册
限制150内