2023年二元一次方程组知识点归纳.doc
《2023年二元一次方程组知识点归纳.doc》由会员分享,可在线阅读,更多相关《2023年二元一次方程组知识点归纳.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二元一次方程组知识点归纳、解题技巧汇总、练习题及答案1、 二元一次方程的定义:具有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。2、 二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。注意 :二元一次方程组不一定都是由两个二元一次方程合在一起组成的! 也可以由一个或多个二元一次方程单独组成。 3、 二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。4、 二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。1. 有一组解 如方程
2、组x+y=5 6x+13y=89 x=-24/7 y=59/7 为方程组的解 2.有无数组解 如方程组x+y=6 2x+2y=12 由于这两个方程事实上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。 3. 无解 如方程组x+y=4 2x+2y=10, 由于方程化简后为 x+y=5 这与方程相矛盾,所以此类方程组无解。 一般解法,消元:将方程组中的未知数个数由多化少,逐个解决。 消元的方法有两种: 代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表达出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这个方法叫做代入消元法,简称代入法
3、。例:解方程组x+y=5 6x+13y=89 解:由得 x=5-y 把带入,得 6(5-y)+13y=89 y=59/7 把y=59/7带入, x=5-59/7 即x=-24/7 x=-24/7 y=59/7 为方程组的解 基本思绪:未知数又多变少。消元法的基本方法:将二元一次方程组转化为一元一次方程。代入法解二元一次方程组的一般环节:1、 从方程组中选出一个系数比较简朴的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表达出来,即写成y=ax+b的形式,即“变”2、 将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。3、 解出这个一元
4、一次方程,求出x的值,即“解”。4、 把求得的x值代入y=ax+b中求出y的值,即“回代”5、 把x、y的值用联立起来即“联”加减消元法:像这种解二元一次方程组的方法叫做加减消元法,简称加减法。 例:解方程组x+y=9 x-y=5 解:+ 2x=14 即 x=7 把x=7带入 得7+y=9 解得y=-2 x=7 y=-2 为方程组的解 用加减消元法解二元一次方程组的解6、 方程组的两个方程中,假如同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。7、 把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加
5、减”。8、 解这个一元一次方程,求得一个未知数的值,即“解”。9、 将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即“回代”。10、把求得的两个未知数的值用联立起来,即“联”。注意:用加减法或者用代入消元法解决问题时,应注意用哪种方法简朴,避免计算麻烦或导致计算错误。教科书中没有的几种解法 (一)加减-代入混合使用的方法. 例1, 13x+14y=41 (1) 14x+13y=40 (2) 解:(2)-(1)得 x-y=-1 x=y-1 (3) 把(3)代入(1)得 13(y-1)+14y=41 13y-13+14y=41 27y=54 y=2 把y=2代入(3)得
6、x=1 所以:x=1, y=2 特点:两方程相加减,单个x或单个y,这样就合用接下来的代入消元. (二)换元法 例2, (x+5)+(y-4)=8 (x+5)-(y-4)=4 令x+5=m,y-4=n 原方程可写为 m+n=8 m-n=4 解得m=6, n=2 所以x+5=6,y-4=2 所以x=1, y=6 特点:两方程中都具有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是重要因素。 (三)另类换元 例3, x:y=1:4 5x+6y=29 令x=t, y=4t 方程2可写为:5t+6*4t=29 29t=29 t=1 所以x=1,y=4 重点一元一次方程、二元一次方程、二元
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 二元 一次 方程组 知识点 归纳
限制150内